Research Article
BibTex RIS Cite
Year 2024, Volume: 21 Issue: 2, 100 - 112, 01.11.2024

Abstract

References

  • S. O. Daramola, E. D. C. Hingston, and M. Demlie, “A review of lateritic soils and their use as landfill liners”, Environ. Earth. Sci., vol. 83, no. 3, Feb. 2024, Art. no. , 118, doi: 10.1007/s12665-023-11392-2.
  • N. F. J. Nadia et al., “Comparative study of laterite and metakaolin/hematite-based geopolymers: Effect of iron source and alkalization”, Appl. Clay. Sci., vol. 233, Mar. 2023, Art. no. 106824, doi: 10.1016/j.clay.2023.106824.
  • J. O. Ukpata, D. E. Ewa, N. G. Success, G. U. Alaneme, O. N. Otu, and B. C. Olaiya, “Effects of aggregate sizes on the performance of laterized concrete”, Sci. Rep., vol. 14, no. 1, Jan. 2024, Art. no. 448, doi: 10.1038/s41598-023 50998-1.
  • S. O. Daramola, M. Demlie, and E. D. C. Hingston, “Mineralogical and sorption characterization of lateritic soils from Southwestern Nigeria for use as landfill liners”, J. Environ. Manage., vol. 355, Mar. 2024, Art. No. 120511, doi: 10.1016/j.jenvman.2024.120511.
  • C. A. Oyelami and J. L. Van Rooy, “A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: A geological perspective”, J. African Earth Sci., vol. 119, pp. 226–237, Jul. 2016, doi: 10.1016/j.jafrearsci.2016.03.018.
  • E. Ogunleye and C. Arum, “Innovations and applications of Laterized concrete in sustainable construction”, Global J. Eng. Technol. Adv., vol. 16, no. 3, pp. 107–120, 2023, doi: 10.30574/gjeta.2023.16.3.0175.
  • C.-C. Vu, O. Plé, J. Weiss, and D. Amitrano, “Revisiting the concept of characteristic compressive strength of concrete”, JOCBME, vol. 263, Dec. 2020, Art. no. 120126, doi: 10.1016/j.conbuildmat.2020.120126.
  • C. Chhorn, S. J. Hong, and S. W. Lee, “Relationship between compressive and tensile strengths of roller-compacted concrete”, J. Traffic Transp. Eng. (English Edition), vol. 5, no. 3, pp. 215–223, Jun. 2018, doi: 10.1016/j.jtte.2017.09.002.
  • F. Almohammed, M. S. Thakur, D. Lee, R. Kumar, and T. Singh, “Flexural and split tensile strength of concrete with basalt fiber: An experimental and computational analysis”, JOCBME, vol. 414, Feb. 2024, Art. no. 134936, doi: 10.1016/j.conbuildmat.2024.134936.
  • H. Abbaslou, A. Tavana Amlashi, A. Ghanizadeh, and S. Azemi, “Effects of mix design and curing time on compressive and tensile strength of bentonite plastic concrete”, JOCBME, Vol. 10, issue 2, number 18, pp.109-124, Sep. 2017, doi: 10.22124/JCR.2017.2418.
  • M. C. Nataraja, L. Srinivasamurthy, V. R. Das, and L. Vineeth, “Effect of aggregate gradation on the mechanical strengths and permeability properties of porous concrete”, JEAS, vol. 70, no. 1, Dec. 2023, Art. no. 153, doi: 10.1186/s44147-023-00325-2.
  • S. T. Kumar, K. V. G. D. Balaji, T. N. S. Reddy, and S. G. Rao, “Mechanical Properties of Concrete when cured with Carbon dioxide”, IJEAT, vol. 8, no. 6, pp. 2544–2549, Agu. 2019, doi: 10.35940/ijeat.F8497.088619.
  • M. Başsürücü, C. Fenerli̇ , C. Kina, and Ş. D. Akbaş, “Effect of fiber type, shape and volume fraction on mechanical and flexural properties of concrete”, JOCBME, pp. 158–171, Sep. 2022, doi: 10.47481/jscmt.1182585.
  • M. A. Shawki, A. Elnemr, C. Koenke, and C. Thomas, “Rheological properties of high-performance SCC using recycled marble powder”, Innov. Infrastruct. Solut., vol. 9, no. 5, May 2024, Art.no.176, doi: 10.1007/s41062-024 01460-2.
  • A. Elnemr and R. Shaltout, “Rheological and Mechanical Characterization of Self-Compacting Concrete Using Recycled Aggregate”, IOP Conf. Ser. Earth Environ. Sci., Vol. 49, No. 1, Jul. 2024. Art. no. 012037, doi: 10.20944/preprints202404.1815.v1.
  • N. Hammad, A. El-Nemr, and I. G. Shaaban, “The Efficiency of Calcium Oxide on Microbial Self-Healing Activity in Alkali-Activated Slag (AAS)”, Appl. Sci., vol. 14, no. 12, Jun. 2024, Art. no. 5299, doi: 10.3390/app14125299.
  • P. D. Nukah, S. J. Abbey, C. A. Booth, and J. Oti, “Evaluation of the Structural Performance of Low Carbon Concrete”, Sustainability, vol. 14, no. 24, Dec. 2022, Art. no. 16765, doi: 10.3390/su142416765.
  • L. J. R. Nunes, “The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies”, Environ., vol. 10, no. 4, Apr. 2023, Art. no. p. 66, doi: 10.3390/environments10040066.
  • A. A. Negm, A. El Nemr, F. Elgabbas, and M. A. Khalaf, “High and normal strength concrete using grounded vitrified clay pipe (GVCP)”, Cleaner Mater., vol. 5, Sep. 2022, Art. no. 100107, doi: 10.1016/j.clema.2022.100107.
  • I. Garba, J. M. Kaura, T. A. Sulaiman, I. Aliyu, and M. Abdullahi, “Effects of laterite on strength and durability of reinforced concrete as partial replacement of fine aggregate”, FUDMA J Sci, vol. 8, no. 1, p. 201-207, Mar. 2024, doi: 10.33003/fjs-2024-0801-2210.
  • J. A. Osunade, “Effect of replacement of lateritic soils with granite fines on the compressive and tensile strengths of laterized concrete”, Build Environ, vol. 37, no. 5, pp. 491–496, May 2002, doi: 10.1016/S0360-1323(01)00049-X.
  • E. B. Ogunbode, S. M. Ibrahim, M. A. Kure, and R. Saka, “Flexural Performance of Laterized Concrete made with Blended Flyash Cement (Fa-Latcon)”, GJSETR, vol. 3, no. 4, pp. 102–109, Apr. 2013, doi: 10.15580/GJSETR.2013.4.020313426.
  • L. M. Alsarhan, A. S. Alayyar, N. B. Alqahtani, and N. H. Khdary, “Circular Carbon Economy (CCE): A Way to Invest CO2 and Protect the Environment, a Review”, Sustainability, vol. 13, no. 21, Nov. 2021, Art. no. 11625, doi: 10.3390/su132111625.
  • F. Cheng et al., “Recent Progress of Sn-Based Derivative Catalysts for Electrochemical Reduction of CO2”, Ener. Techno., vol. 9, no. 1, Oct. 2021, Art. no. 2000799, doi: 10.1002/ente.202000799.
  • Q. Zhang et al., “Utilization of solid wastes to sequestrate carbon dioxide in cement-based materials and methods to improve carbonation degree: A review”, J. CO2 Util, vol. 72, Jun. 2023, Art. no. 102502, doi: 10.1016/j.jcou.2023.102502.
  • G. Stojanović, M. Radovanović, D. Krstić, I. Ignjatović, J. Dragaš, and V. Carević, “Determination of pH in Powdered Concrete Samples or in Suspension”, Appl. Sci., vol. 9, no. 16, Aug. 2019, Art. no. 3257, doi: 10.3390/app9163257.
  • V. Rostami, Y. Shao, and A. J. Boyd, “Carbonation Curing versus Steam Curing for Precast Concrete Production”, J. Mater. Civ. Eng., vol. 24, no. 9, pp. 1221–1229, Sep. 2012, doi: 10.1061/(ASCE)MT.1943-5533.0000462.
  • D. Meng, C. Unluer, E.-H. Yang, and S. Qian, “Carbon sequestration and utilization in cement-based materials and potential impacts on durability of structural concrete”, Cons. Build. Mater., vol. 361, Dec. 2022, Art. no. 129610, doi: 10.1016/j.conbuildmat.2022.129610.
  • H. Zhang, C. Romero Rodriguez, H. Dong, Y. Gan, E. Schlangen, and B. Šavija, “Elucidating the Effect of Accelerated Carbonation on Porosity and Mechanical Properties of Hydrated Portland Cement Paste Using X-Ray Tomography and Advanced Micromechanical Testing”, Micromachines, vol. 11, no. 5, May 2020, Art. no. 471, doi: 10.3390/mi11050471.
  • H. Kim, S. Siddique, and J. G. Jang, “Effect of carbonation curing on the mechanical properties of belite-rich cement mortar exposed to elevated temperatures”, J. Build. Eng., vol. 52, Jul. 2022, Art. no. 104453, doi: 10.1016/j.jobe.2022.104453.
  • V. Chandel and H. Sood, “Effect of Induced Carbonation on the Mechanical Properties of M30 and M35 Grade Concrete by Using PPC”, JETIR, vol. 6, no. 6, pp. 280–286, Dec. 2019.
  • T. Chen and X. Gao, “Use of Carbonation Curing to Improve Mechanical Strength and Durability of Pervious Concrete”, ACS Sustainable Chem. Eng., vol. 8, no. 9, pp. 3872–3884, Mar. 2020, doi: 10.1021/acssuschemeng.9b07348.
  • O. O. Ojedokun and P. S. Mangat, “Chemical composition and physico-mechanical properties of carbonated alkali activated concrete and mortar”, J. Build. Eng., vol. 71, Jul. 2023, Art. no.106480, doi: 10.1016/j.jobe.2023.106480.
  • P. Gangannavar, B. E. Bhojaraja, and T. S. Shetty, “Prediction of material composition in lateritic soil using spectroradiometer”, Mater. Today: Proceed., vol. 88, pp. 152–159, 2023, doi: 10.1016/j.matpr.2023.06.402.
  • S. O. Folagbade, “Effect of Carbonation on the Compressive Strength Development of Laterized Concrete”, CER, Vol. 12, No.4, pp. 29-35, May 2020, doi: 10.7176/CER/12-4-04.
  • S. Godavarthy, S. Ratnam, A. Prasad, and U. R. Raju, “A Study on Strength and Durability Characteristics of Concrete with Partial Replacement of Fine Aggregate by Laterite Sand”, Int. j. Innov. Res. Sci. Eng. Technol., vol. 2, pp. 134-141, Aug. 2015.
  • J. Wang, T. Lord, Y. Wang, L. Black, and Q. Li, “Effects of carbonation on mechanical properties of concrete under high temperature and impact”, Proc. Inst. Civ. Eng.: Smart Infrastruct. Constr., vol. 175, no. 1, pp. 44–56, Jun. 2022, doi: 10.1680/jsmic.21.00021.
  • W. Fan et al., “Effects of carbonation on mechanical properties of CAC-GGBFS blended strain hardening cementitious composites”, Low-carbon Mater. Green Constr., vol. 1, no. 1, p. 2, Jan. 2023, doi: 10.1007/s44242-022-00001-3.
  • J. J. Chang, W. Yeih, R. Huang, and J. M. Chi, “Mechanical properties of carbonated concrete”, J. Chin. Inst. Eng., vol. 26, no. 4, pp. 513–522, Jul. 2003, doi: 10.1080/02533839.2003.9670804.
  • J. M. Chi, R. Huang, and C. C. Yang, “Effects of Carbonation on Mechanical Properties and Durability of Concrete Using Accelerated Testing Method”, J. Mar. Sci. Tech. , vol. 10, no. 1, Mar. 2002, doi: 10.51400/2709-6998.2296.
  • S. Hussain, D. Bhunia, and S. B. Singh, “An Experimental Investigation of Accelerated Carbonation on Properties of Concrete”, EJ, vol. 20, no. 2, pp. 29–38, Jan. 2016, doi: 10.4186/ej.2016.20.2.29.
  • J. V. M. Raman, “Experimental Investigation of Partial Replacement of Sand by Laterite Soil in Concrete”, Int. J. Res. Appl. Sci. Eng. Technol., pp. 247–250, Feb. 2017, doi: 10.22214/IJRASET.2017.2039.
  • U. S. Harshith, S. G, A. Mujeeb, and M. Y. S, “Experimental Study on Strength of Concrete by Partial Replacement of Coarse Aggregate by Laterite Stone”, MatSciRN: Other Materials Performance (Topic), 2020, Accessed: 2024. [Online]. Available: s/3824af2d4e805f4c855e4ee800a6d09c/.

The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete

Year 2024, Volume: 21 Issue: 2, 100 - 112, 01.11.2024

Abstract

Laterized concrete, incorporating laterite soil, offers a sustainable alternative to conventional concrete in regions where traditional materials are scarce or expensive. This study investigates the impact of carbonation on the flexural and tensile splitting strengths of laterized concrete. Carbonation, a chemical reaction between CO2 and calcium hydroxide in concrete, forms calcium carbonate, enhancing the mechanical properties of concrete. This research focuses on various laterite replacement levels (0%, 10%, 20%, 30%, 40%, 50%) and their performance under different exposure conditions (carbonation, water immersion, dry environment). The results demonstrate that extended carbonation significantly enhances the tensile splitting and flexural strengths of laterized concrete up to 40% replacement, with the most substantial improvements at 10% to 30%. Higher replacement levels (30% and above) reduce these strengths, particularly in dry conditions. The findings underscore the potential of laterized concrete as an eco-friendly building material, balancing strength and sustainability. This study contributes to advancing sustainable construction practices, promoting the use of locally available materials, and mitigating environmental impacts.

References

  • S. O. Daramola, E. D. C. Hingston, and M. Demlie, “A review of lateritic soils and their use as landfill liners”, Environ. Earth. Sci., vol. 83, no. 3, Feb. 2024, Art. no. , 118, doi: 10.1007/s12665-023-11392-2.
  • N. F. J. Nadia et al., “Comparative study of laterite and metakaolin/hematite-based geopolymers: Effect of iron source and alkalization”, Appl. Clay. Sci., vol. 233, Mar. 2023, Art. no. 106824, doi: 10.1016/j.clay.2023.106824.
  • J. O. Ukpata, D. E. Ewa, N. G. Success, G. U. Alaneme, O. N. Otu, and B. C. Olaiya, “Effects of aggregate sizes on the performance of laterized concrete”, Sci. Rep., vol. 14, no. 1, Jan. 2024, Art. no. 448, doi: 10.1038/s41598-023 50998-1.
  • S. O. Daramola, M. Demlie, and E. D. C. Hingston, “Mineralogical and sorption characterization of lateritic soils from Southwestern Nigeria for use as landfill liners”, J. Environ. Manage., vol. 355, Mar. 2024, Art. No. 120511, doi: 10.1016/j.jenvman.2024.120511.
  • C. A. Oyelami and J. L. Van Rooy, “A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: A geological perspective”, J. African Earth Sci., vol. 119, pp. 226–237, Jul. 2016, doi: 10.1016/j.jafrearsci.2016.03.018.
  • E. Ogunleye and C. Arum, “Innovations and applications of Laterized concrete in sustainable construction”, Global J. Eng. Technol. Adv., vol. 16, no. 3, pp. 107–120, 2023, doi: 10.30574/gjeta.2023.16.3.0175.
  • C.-C. Vu, O. Plé, J. Weiss, and D. Amitrano, “Revisiting the concept of characteristic compressive strength of concrete”, JOCBME, vol. 263, Dec. 2020, Art. no. 120126, doi: 10.1016/j.conbuildmat.2020.120126.
  • C. Chhorn, S. J. Hong, and S. W. Lee, “Relationship between compressive and tensile strengths of roller-compacted concrete”, J. Traffic Transp. Eng. (English Edition), vol. 5, no. 3, pp. 215–223, Jun. 2018, doi: 10.1016/j.jtte.2017.09.002.
  • F. Almohammed, M. S. Thakur, D. Lee, R. Kumar, and T. Singh, “Flexural and split tensile strength of concrete with basalt fiber: An experimental and computational analysis”, JOCBME, vol. 414, Feb. 2024, Art. no. 134936, doi: 10.1016/j.conbuildmat.2024.134936.
  • H. Abbaslou, A. Tavana Amlashi, A. Ghanizadeh, and S. Azemi, “Effects of mix design and curing time on compressive and tensile strength of bentonite plastic concrete”, JOCBME, Vol. 10, issue 2, number 18, pp.109-124, Sep. 2017, doi: 10.22124/JCR.2017.2418.
  • M. C. Nataraja, L. Srinivasamurthy, V. R. Das, and L. Vineeth, “Effect of aggregate gradation on the mechanical strengths and permeability properties of porous concrete”, JEAS, vol. 70, no. 1, Dec. 2023, Art. no. 153, doi: 10.1186/s44147-023-00325-2.
  • S. T. Kumar, K. V. G. D. Balaji, T. N. S. Reddy, and S. G. Rao, “Mechanical Properties of Concrete when cured with Carbon dioxide”, IJEAT, vol. 8, no. 6, pp. 2544–2549, Agu. 2019, doi: 10.35940/ijeat.F8497.088619.
  • M. Başsürücü, C. Fenerli̇ , C. Kina, and Ş. D. Akbaş, “Effect of fiber type, shape and volume fraction on mechanical and flexural properties of concrete”, JOCBME, pp. 158–171, Sep. 2022, doi: 10.47481/jscmt.1182585.
  • M. A. Shawki, A. Elnemr, C. Koenke, and C. Thomas, “Rheological properties of high-performance SCC using recycled marble powder”, Innov. Infrastruct. Solut., vol. 9, no. 5, May 2024, Art.no.176, doi: 10.1007/s41062-024 01460-2.
  • A. Elnemr and R. Shaltout, “Rheological and Mechanical Characterization of Self-Compacting Concrete Using Recycled Aggregate”, IOP Conf. Ser. Earth Environ. Sci., Vol. 49, No. 1, Jul. 2024. Art. no. 012037, doi: 10.20944/preprints202404.1815.v1.
  • N. Hammad, A. El-Nemr, and I. G. Shaaban, “The Efficiency of Calcium Oxide on Microbial Self-Healing Activity in Alkali-Activated Slag (AAS)”, Appl. Sci., vol. 14, no. 12, Jun. 2024, Art. no. 5299, doi: 10.3390/app14125299.
  • P. D. Nukah, S. J. Abbey, C. A. Booth, and J. Oti, “Evaluation of the Structural Performance of Low Carbon Concrete”, Sustainability, vol. 14, no. 24, Dec. 2022, Art. no. 16765, doi: 10.3390/su142416765.
  • L. J. R. Nunes, “The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies”, Environ., vol. 10, no. 4, Apr. 2023, Art. no. p. 66, doi: 10.3390/environments10040066.
  • A. A. Negm, A. El Nemr, F. Elgabbas, and M. A. Khalaf, “High and normal strength concrete using grounded vitrified clay pipe (GVCP)”, Cleaner Mater., vol. 5, Sep. 2022, Art. no. 100107, doi: 10.1016/j.clema.2022.100107.
  • I. Garba, J. M. Kaura, T. A. Sulaiman, I. Aliyu, and M. Abdullahi, “Effects of laterite on strength and durability of reinforced concrete as partial replacement of fine aggregate”, FUDMA J Sci, vol. 8, no. 1, p. 201-207, Mar. 2024, doi: 10.33003/fjs-2024-0801-2210.
  • J. A. Osunade, “Effect of replacement of lateritic soils with granite fines on the compressive and tensile strengths of laterized concrete”, Build Environ, vol. 37, no. 5, pp. 491–496, May 2002, doi: 10.1016/S0360-1323(01)00049-X.
  • E. B. Ogunbode, S. M. Ibrahim, M. A. Kure, and R. Saka, “Flexural Performance of Laterized Concrete made with Blended Flyash Cement (Fa-Latcon)”, GJSETR, vol. 3, no. 4, pp. 102–109, Apr. 2013, doi: 10.15580/GJSETR.2013.4.020313426.
  • L. M. Alsarhan, A. S. Alayyar, N. B. Alqahtani, and N. H. Khdary, “Circular Carbon Economy (CCE): A Way to Invest CO2 and Protect the Environment, a Review”, Sustainability, vol. 13, no. 21, Nov. 2021, Art. no. 11625, doi: 10.3390/su132111625.
  • F. Cheng et al., “Recent Progress of Sn-Based Derivative Catalysts for Electrochemical Reduction of CO2”, Ener. Techno., vol. 9, no. 1, Oct. 2021, Art. no. 2000799, doi: 10.1002/ente.202000799.
  • Q. Zhang et al., “Utilization of solid wastes to sequestrate carbon dioxide in cement-based materials and methods to improve carbonation degree: A review”, J. CO2 Util, vol. 72, Jun. 2023, Art. no. 102502, doi: 10.1016/j.jcou.2023.102502.
  • G. Stojanović, M. Radovanović, D. Krstić, I. Ignjatović, J. Dragaš, and V. Carević, “Determination of pH in Powdered Concrete Samples or in Suspension”, Appl. Sci., vol. 9, no. 16, Aug. 2019, Art. no. 3257, doi: 10.3390/app9163257.
  • V. Rostami, Y. Shao, and A. J. Boyd, “Carbonation Curing versus Steam Curing for Precast Concrete Production”, J. Mater. Civ. Eng., vol. 24, no. 9, pp. 1221–1229, Sep. 2012, doi: 10.1061/(ASCE)MT.1943-5533.0000462.
  • D. Meng, C. Unluer, E.-H. Yang, and S. Qian, “Carbon sequestration and utilization in cement-based materials and potential impacts on durability of structural concrete”, Cons. Build. Mater., vol. 361, Dec. 2022, Art. no. 129610, doi: 10.1016/j.conbuildmat.2022.129610.
  • H. Zhang, C. Romero Rodriguez, H. Dong, Y. Gan, E. Schlangen, and B. Šavija, “Elucidating the Effect of Accelerated Carbonation on Porosity and Mechanical Properties of Hydrated Portland Cement Paste Using X-Ray Tomography and Advanced Micromechanical Testing”, Micromachines, vol. 11, no. 5, May 2020, Art. no. 471, doi: 10.3390/mi11050471.
  • H. Kim, S. Siddique, and J. G. Jang, “Effect of carbonation curing on the mechanical properties of belite-rich cement mortar exposed to elevated temperatures”, J. Build. Eng., vol. 52, Jul. 2022, Art. no. 104453, doi: 10.1016/j.jobe.2022.104453.
  • V. Chandel and H. Sood, “Effect of Induced Carbonation on the Mechanical Properties of M30 and M35 Grade Concrete by Using PPC”, JETIR, vol. 6, no. 6, pp. 280–286, Dec. 2019.
  • T. Chen and X. Gao, “Use of Carbonation Curing to Improve Mechanical Strength and Durability of Pervious Concrete”, ACS Sustainable Chem. Eng., vol. 8, no. 9, pp. 3872–3884, Mar. 2020, doi: 10.1021/acssuschemeng.9b07348.
  • O. O. Ojedokun and P. S. Mangat, “Chemical composition and physico-mechanical properties of carbonated alkali activated concrete and mortar”, J. Build. Eng., vol. 71, Jul. 2023, Art. no.106480, doi: 10.1016/j.jobe.2023.106480.
  • P. Gangannavar, B. E. Bhojaraja, and T. S. Shetty, “Prediction of material composition in lateritic soil using spectroradiometer”, Mater. Today: Proceed., vol. 88, pp. 152–159, 2023, doi: 10.1016/j.matpr.2023.06.402.
  • S. O. Folagbade, “Effect of Carbonation on the Compressive Strength Development of Laterized Concrete”, CER, Vol. 12, No.4, pp. 29-35, May 2020, doi: 10.7176/CER/12-4-04.
  • S. Godavarthy, S. Ratnam, A. Prasad, and U. R. Raju, “A Study on Strength and Durability Characteristics of Concrete with Partial Replacement of Fine Aggregate by Laterite Sand”, Int. j. Innov. Res. Sci. Eng. Technol., vol. 2, pp. 134-141, Aug. 2015.
  • J. Wang, T. Lord, Y. Wang, L. Black, and Q. Li, “Effects of carbonation on mechanical properties of concrete under high temperature and impact”, Proc. Inst. Civ. Eng.: Smart Infrastruct. Constr., vol. 175, no. 1, pp. 44–56, Jun. 2022, doi: 10.1680/jsmic.21.00021.
  • W. Fan et al., “Effects of carbonation on mechanical properties of CAC-GGBFS blended strain hardening cementitious composites”, Low-carbon Mater. Green Constr., vol. 1, no. 1, p. 2, Jan. 2023, doi: 10.1007/s44242-022-00001-3.
  • J. J. Chang, W. Yeih, R. Huang, and J. M. Chi, “Mechanical properties of carbonated concrete”, J. Chin. Inst. Eng., vol. 26, no. 4, pp. 513–522, Jul. 2003, doi: 10.1080/02533839.2003.9670804.
  • J. M. Chi, R. Huang, and C. C. Yang, “Effects of Carbonation on Mechanical Properties and Durability of Concrete Using Accelerated Testing Method”, J. Mar. Sci. Tech. , vol. 10, no. 1, Mar. 2002, doi: 10.51400/2709-6998.2296.
  • S. Hussain, D. Bhunia, and S. B. Singh, “An Experimental Investigation of Accelerated Carbonation on Properties of Concrete”, EJ, vol. 20, no. 2, pp. 29–38, Jan. 2016, doi: 10.4186/ej.2016.20.2.29.
  • J. V. M. Raman, “Experimental Investigation of Partial Replacement of Sand by Laterite Soil in Concrete”, Int. J. Res. Appl. Sci. Eng. Technol., pp. 247–250, Feb. 2017, doi: 10.22214/IJRASET.2017.2039.
  • U. S. Harshith, S. G, A. Mujeeb, and M. Y. S, “Experimental Study on Strength of Concrete by Partial Replacement of Coarse Aggregate by Laterite Stone”, MatSciRN: Other Materials Performance (Topic), 2020, Accessed: 2024. [Online]. Available: s/3824af2d4e805f4c855e4ee800a6d09c/.
There are 43 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Mark Onipe 0009-0001-3267-2026

Opeyemi Osadola This is me 0000-0001-6607-5978

Bridget Oseghale This is me 0009-0009-8691-5407

Publication Date November 1, 2024
Submission Date August 20, 2024
Acceptance Date October 1, 2024
Published in Issue Year 2024 Volume: 21 Issue: 2

Cite

APA Onipe, M., Osadola, O., & Oseghale, B. (2024). The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete. Cankaya University Journal of Science and Engineering, 21(2), 100-112.
AMA Onipe M, Osadola O, Oseghale B. The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete. CUJSE. November 2024;21(2):100-112.
Chicago Onipe, Mark, Opeyemi Osadola, and Bridget Oseghale. “The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete”. Cankaya University Journal of Science and Engineering 21, no. 2 (November 2024): 100-112.
EndNote Onipe M, Osadola O, Oseghale B (November 1, 2024) The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete. Cankaya University Journal of Science and Engineering 21 2 100–112.
IEEE M. Onipe, O. Osadola, and B. Oseghale, “The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete”, CUJSE, vol. 21, no. 2, pp. 100–112, 2024.
ISNAD Onipe, Mark et al. “The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete”. Cankaya University Journal of Science and Engineering 21/2 (November 2024), 100-112.
JAMA Onipe M, Osadola O, Oseghale B. The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete. CUJSE. 2024;21:100–112.
MLA Onipe, Mark et al. “The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete”. Cankaya University Journal of Science and Engineering, vol. 21, no. 2, 2024, pp. 100-12.
Vancouver Onipe M, Osadola O, Oseghale B. The Role of Carbonation in Modifying Flexural and Tensile Properties of Laterized Concrete. CUJSE. 2024;21(2):100-12.