Investigation of Fracture Formation During Bending of 5xxx Series Aluminum Alloys
Year 2025,
Volume: 22 Issue: 1, 42 - 49, 01.05.2025
Mehmet Okan Görtan
,
Mehmet Ali Çiftçi
Abstract
Aluminum alloys are frequently used in the defense industry thanks to their lightweight and comparatively high strength. In the current study, bending and fracture formation characteristics of EN AW 5083-H321 aluminum sheets are investigated using bending tests and finite element analysis. Bending tests are conducted using three different thicknesses in sheet metals, namely 3 mm, 4 mm, and 6 mm. Furthermore, five different bending radii is combined with those thicknesses. Limiting bending radius to thickness ratios are determined using experiments. Those experiments are modeled using finite element analysis. Consequently, fracture parameters of the investigated material are defined to be able to accurately model the process. Therefore, a valuable tool has been developed to aid designers in future applications.
Supporting Institution
TÜBİTAK
Thanks
Authors of this work thank to Scientific and Technological Research Council of Turkey for financial support
under the project 217M962.
References
-
M. Kolar, K.O. Pedersen, S. Gulbrandsen-Dahl, K. Marthinsen, “Combined effect of deformation and artificial aging on mechanical properties of Al-Mg-Si alloy,” Trans. Nonferrous Met. Soc. China, vol. 22, pp. 1824-1830, Aug. 2012, doi: 10.1016/S1003-6326(11)61393-9.
-
A. Cuniberti, A. Tolley, M.V. Castro Riglos, R. Giovachini, “Influence of natural aging on the precipitation hardening of an AlMgSi alloy,” Mater. Sci. Eng. A, vol. 527, pp. 5307-5311, Jul. 2010, doi:10.1016/j.msea.2010.05.003.
-
H. Demir, S. Gündüz, “The effect of aging on machinability of 6061 aluminum alloy,” Mater. Des., vol. 30, pp. 14801483, May 2009, doi: 10.1016/j.matdes.2008.08.007.
-
W. F. Hosford, R. M. Caddell, “Metal Forming Mechanics and Metallurgy”. Cambridge University Press, 3rd edition, 2007.
-
Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8/E8M-22, 2024.
-
H. Kim, S. Chatti, N. Kardes, “Bending, Flanging, and Hemming” in Sheet Metal Forming: Processes and Applications, T. Altan, A.E. Tekkaya, Eds. Materials Park, Ohio, USA, ASM International, 2012, pp. 19-49.
-
Y. Huang, H. B. Wang, and F. Guo, “The improved Irwin’s model for crack problems in power-law hardening materials,” Int. J. Appl. Mech., May 2023, doi: 10.1142/s1758825123500643.
-
X. R. Chu, L. Leotoing, D. Guines, and J. Gao, “Comparison of Constitutive Laws on the Modeling of Thermo Viscoplastic Behaviour of an Aluminum Alloy,” J. Appl. Mech. Mater., pp. 307–310, Jan. 2014, doi: 10.4028/www.scientific.net/amm.496-500.307.
-
J. P. Pascon, M. A. S. Torres, and C. A. R. P. Baptista, “Numerical model for the stress field ahead of a crack in
elastoplastic regime,” Procedia Struct. Integr., vol. 17, pp. 411–418, Jan. 2019, doi: 10.1016/J.PROSTR.2019.08.054.
-
H. Palaniswamy, ‘’Plastic Deformation – State of Stress, Yield Criteria Flow Rule, and Hardening Rules,” in Sheet
Metal Forming: Fundamentals, T. Altan, A.E. Tekkaya, Eds. Materials Park, Ohio, USA, ASM International, 2012, pp. 5372.
-
K. Anoukou, F. Pastor, P. Dufrenoy, and D. Kondo, “Limit analysis and homogenization of porous materials with
Mohr–Coulomb matrix. Part I: Theoretical formulation,” J. Mech. Phys. Solids, vol. 91, pp. 145–171, Jun. 2016, doi:
10.1016/J.JMPS.2016.01.018.
-
N. Kugalur-Palanisamy, E. Rivière-Lorphèvre, P.-J. Arrazola, and F. Ducobu, “Comparison of Johnson-Cook and modified Johnson-Cook material constitutive models and their influence on finite element modelling of Ti6Al4V orthogonal cutting process,” AIP Conference Proceedings, vol. 2113, no.1, p. 080009, Jul. 2019, doi: 10.1063/1.5112617.
-
P. G. Kossakowski, “Prediction of Ductile Fracture for S235JR Steel Using the Stress Modified Critical Strain and
Gurson-Tvergaard-Needleman Models,” J. Mater. Civ. Eng., vol. 24, no. 12, pp. 1492–1500, Dec. 2012, doi: 10.1061/(ASCE)MT.1943-5533.0000546.
-
Lyamina, E., Alexandrov, S., Jeng, Y.-R., & Hwang, Y. M., “Modelling of Damage Evolution in the Vicinity of
Frictional Metal Forming,”Adv. Mater. Res., Vol. 579, pp. 124–133, Oct. 2012, doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.579.124.
-
J. K. Holmen, L. E. B. Dæhli, O. S. Hopperstad, and T. Børvik, “Prediction of ductile failure using a phenomenological model calibrated from micromechanical simulations,” Procedia Struct. Integr., vol. 2, pp. 2543–2549, Dec. 2016, doi:10.1016/j.prostr.2016.06.318.
-
S. Alexandrov and D. Vilotic, “A theoretical—experimental method for the identification of the modified Cockroft—Latham ductile fracture criterion,” P. I. Mech. Eng. C-J Mec., vol. 222, no. 9, pp. 1869–1872, Sep. 2008, doi: 10.1243/09544062JMES1055.
-
Aluminium and Aluminium Alloys – Chemical Composition and Form of Wrought Products, DIN EN 573-3, 2022.
-
Aluminium and Aluminium Alloys – Sheet, Strip and Plate, DIN EN 00485-2, 2007.