Research Article
BibTex RIS Cite

Seed Geometric Morphometrics of Neottioid Orchids

Year 2022, , 295 - 301, 29.09.2022
https://doi.org/10.18466/cbayarfbe.1108191

Abstract

This study aims to investigate orchid seed variation between some representatives of Neottieae, C. rubra, L. abortivum, Neottia nidus-avis, and N. (Listera) ovata, naturally distributed in our country by using geometric morphometric analyses based on 2-dimensional landmarks. For this purpose, a total of 95 specimens were evaluated. The results of ANOVA, PCA, and discriminant analyses showed significant shape and size differences between the species. Size differences were statically significant among all species except for that between C. rubra and N. ovata. Based on PCA, shape differences were most prominent in the chalazal and micropylar regions of the seed as well as the whole seed width. Discriminant analysis was also statistically significant and cross-validation scores were a highly powerful to distinguish the species with scores ranging from 60% to 88%. Regression analyses also showed highly significant allometric effect of the size on shape with a similar trend across species. Based on current results, geometric morphometric analysis is promising in the study of morphological variation within plant parts. The present study is also significant in terms of the widespread use of such studies in the field of botany, especially in the context of systematic or functional morphology.

Thanks

The author would like to thank Dr. Sadık Demirtaş for technical assistance, and Prof. Gülcan Şenel and Dr. Mustafa Kemal Akbulut for providing some seed materials.

References

  • [1]. Delforge, P. Orchids of Europe, North Africa and the Middle East; A&C Black: London, England, 2006.
  • [2]. The Plant List. 2022. Retrieved from http://www.theplantlist.org/ (accessed at 23.03.2022).
  • [3]. Davis, PH. Flora of Turkey and Aegean Islands (Vol. 8).; Edinburgh University Press: Edinburgh, Scotland, 1982.
  • [4]. Güner, A, Aslan, S, Ekim, T, Vural, M, Babaç, MT. 2012. Türkiye Bitkileri Listesi. Damarlı Bitkiler, Istanbul: Nezahat Gökyigit Botanik Bahçesi ve Flora Araştırmaları Dernegi Yayını; İstanbul, Turkey, 2012.
  • [5]. Lindley, J. The genera and species of orchidaceous plants; Ridgways: London, UK, 1830-1840.
  • [6]. Schlechter, R. 1926. Das System der Orchidaceen. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem; 9: 563–591.
  • [7]. Rasmussen, F. 1982. The gynostemium of the Neottioid orchids. - Opera Botanica; 65: 1-96.
  • [8]. Pfitzer, E. 1887. Zur organophyletischen Natur des Orchideen labellums. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie; 84: 175-214.
  • [9]. Dressler, R. The orchids, Natural history and classification; Harvard Univ. Press: Cambridge, USA, 1981.
  • [10]. Brieger, FG, Maatsch, R, Senghas, K. Tribus Neottieae. In Schlechter, R., (ed.): Die Orchideen, Paul Parey, Berlin, 1974, pp. 287 - 294.
  • [11]. Bentham, G. 1881. Notes on Orchideae. The Journal of the Linnean Society; 18: 281-360.
  • [12]. Rasmussen, HN. Terrestrial orchids: From seed to mycotrophic plant; Cambridge University Press: New York, 1995.
  • [13]. Arditti, J, Ghani, AKA. 2000. Tansley review no. 110. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist; 145(3): 367-421.
  • [14]. Chase, MW, Pippen, J. 1990. Seed morphology and phylogeny in subtribe Catasetinae (Orchidaceae). Lindleyana; 5: 126-133.
  • [15]. Kurzweil, H. 1993. Seed morphology in Southern African Orchidoideae (Orchidaceae). Plant Systematics and Evolution; 185: 229-247.
  • [16]. Molvray, M, Kores, PJ. 1995. Character analysis of the seed coat in Spiranthoideae and Orchidoideae, with special reference to the Diurideae (Orchidaceae). American Journal of Botany; 82: 1443-1454.
  • [17]. Aybeke, M. 2007. Pollen and seed morphology of some Ophrys L.(Orchidaceae) taxa. Journal of Plant Biology; 50: 387-395.
  • [18]. Gamarra, R, Ortú˜nez, E, Cela, PG, Guada˜no, V. 2012. Anacamptis versus Orchis (Orchidaceae): Seed micromorphology and its taxonomic significance. Plant Systematics and Evolution; 298: 597-607.
  • [19]. Jensen, RJ. 2003. The conundrum of morphometrics. Taxon; 52: 663-671.
  • [20]. Demirtaş, S, Gündüz, İ, Herman, JS. 2022. Discrimination of the sister hedgehog species Erinaceus concolor and E. roumanicus (Erinaceomorpha: Mammalia): A Geometric morphometric approach. Turkish Journal of Zoology; 46(2): 238-235.
  • [21]. Viscosi, V, Cardini, A. 2011. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PloS one; 6(10): e25630.
  • [22]. Yang, K, Wu, J, Li, X, Pang, X, Yuan, Y, Qi, G, Yang, M. 2022. Intraspecific leaf morphological variation in Quercus dentata Thunb.: a comparison of traditional and geometric morphometric methods, a pilot study. Journal of Forestry Research; 1-14.
  • [23]. Chemisquy, MA, Prevosti, FJ, Morrone, O. 2009. Seed morphology in the tribe Chloraeeae (Orchidaceae): combining traditional and geometric morphometrics. Botanical Journal of the Linnean Society; 160(2): 171-183.
  • [24]. Akbulut, MK, Şenel, G. 2016. The seeds micromorphology and morphometry of certain Dactylorhiza (Orchidaceae) species distributed in Turkey. Rendiconti Lincei; 27(4): 679-686. [25]. Rohlf, FJ. 2015. The TPS series of software. Hystrix; 26: 9-12.
  • [26]. Rohlf, FJ. tpsUtil, version 1.46. Department of Ecology and Evolution State University of New York; Stony Brook, NY, USA, 2010a.
  • [27]. Rohlf, FJ. tpsDig, version 2.16; Department of Ecology and Evolution, State University of New York at Stony Brook: Stony Brook, NY, USA, 2010b.
  • [28]. Klingenberg, CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources; 11: 353-357.
  • [29]. Rohlf, FJ, Slice DE 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology; 39: 40-59.
  • [30]. Dryden, IL, Mardia, KV. Statistical shape analysis: with applications in R, vol. 995; John Wiley: Chichester, UK, 2016.
  • [31]. Sanflippo, PG, Cardini, A, Hewitt, AW, Crowston, JG, Mackey, DA, 2009. Optic disc morphology: rethinking shape. Progress in Retinal and Eye Research; 28(4): 227-248.
  • [32]. Klingenberg, CP, Barluenga, M, Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution; 56(10): 1909-1920.
  • [33]. Hammer, Ø, Harper, DAT, Ryan, PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica; 4(1): 1-9.
  • [34]. Klingenberg, CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources; 11: 353-357.
  • [35]. Süngü Şeker, Ş, Akbulut, MK, Şenel, G. 2021. Seed morphometry and ultrastructure studies on some Turkish orchids (Orchidaceae). Microscopy Research and Technique; 84(10): 2409-2420.
  • [36]. Molvray, M, Kores, P. 1995. Character analysis of the seed coat in Spiranthoideae and Orchidoideae, with special reference to the Diurideae (Orchidaceae). American Journal of Botany; 82: 1443-1454.
  • [37]. Nakanishi, H. 2022. Seed Morphology and Dispersibility of Orchids in Warm Temperate Japan. Acta Phytotaxonomica et Geobotanica; 73(1): 19-33.
  • [38]. Gamarra, R. Ortúñez, E, Galán Cela, P, Guadaño, V. 2012. Anacamptis versus Orchis (Orchidaceae): seed micromorphology and its taxonomic significance. Plant systematics and evolution; 298(3): 597-607.
  • [39]. Süngü Şeker, Ş, Şenel, G. 2017. Comparative seed micromorphology and morphometry of some orchid species (Orchidaceae) belong to the related Anacamptis, Orchis and Neotinea genera. Biologia; 72(1): 14-23.
  • [40]. Magrini, S, Buono, S, Gransinigh, E, Rempicci, M, Onofri, S, Scoppola, A. Outline analysis for identifying Limodorum species from seeds. In: Nimis, PL, Vignes Lebbe, R, (eds.) Tools for identifying biodiversity. Edizioni Università di Trieste (EUT), Trieste, 2010, pp. 249–250.
  • [41]. Bersweden, L, Viruel, J, Schatz, B, Harland, J, Gargiulo, R, Cowan, RS, ... Fay, MF. 2021. Microsatellites and petal morphology reveal new patterns of admixture in Orchis hybrid zones. American journal of botany; 108(8): 1388-1404.
  • [42]. Arditti, J, Michaud, J, Healey, P. 1980. Morphometry of orchid seeds. II. Native Californian and related species of Calypso, Cephalanthera, Corallorhiza and Epipactis. American Journal of Botany; 67: 347-360.
Year 2022, , 295 - 301, 29.09.2022
https://doi.org/10.18466/cbayarfbe.1108191

Abstract

References

  • [1]. Delforge, P. Orchids of Europe, North Africa and the Middle East; A&C Black: London, England, 2006.
  • [2]. The Plant List. 2022. Retrieved from http://www.theplantlist.org/ (accessed at 23.03.2022).
  • [3]. Davis, PH. Flora of Turkey and Aegean Islands (Vol. 8).; Edinburgh University Press: Edinburgh, Scotland, 1982.
  • [4]. Güner, A, Aslan, S, Ekim, T, Vural, M, Babaç, MT. 2012. Türkiye Bitkileri Listesi. Damarlı Bitkiler, Istanbul: Nezahat Gökyigit Botanik Bahçesi ve Flora Araştırmaları Dernegi Yayını; İstanbul, Turkey, 2012.
  • [5]. Lindley, J. The genera and species of orchidaceous plants; Ridgways: London, UK, 1830-1840.
  • [6]. Schlechter, R. 1926. Das System der Orchidaceen. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem; 9: 563–591.
  • [7]. Rasmussen, F. 1982. The gynostemium of the Neottioid orchids. - Opera Botanica; 65: 1-96.
  • [8]. Pfitzer, E. 1887. Zur organophyletischen Natur des Orchideen labellums. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie; 84: 175-214.
  • [9]. Dressler, R. The orchids, Natural history and classification; Harvard Univ. Press: Cambridge, USA, 1981.
  • [10]. Brieger, FG, Maatsch, R, Senghas, K. Tribus Neottieae. In Schlechter, R., (ed.): Die Orchideen, Paul Parey, Berlin, 1974, pp. 287 - 294.
  • [11]. Bentham, G. 1881. Notes on Orchideae. The Journal of the Linnean Society; 18: 281-360.
  • [12]. Rasmussen, HN. Terrestrial orchids: From seed to mycotrophic plant; Cambridge University Press: New York, 1995.
  • [13]. Arditti, J, Ghani, AKA. 2000. Tansley review no. 110. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist; 145(3): 367-421.
  • [14]. Chase, MW, Pippen, J. 1990. Seed morphology and phylogeny in subtribe Catasetinae (Orchidaceae). Lindleyana; 5: 126-133.
  • [15]. Kurzweil, H. 1993. Seed morphology in Southern African Orchidoideae (Orchidaceae). Plant Systematics and Evolution; 185: 229-247.
  • [16]. Molvray, M, Kores, PJ. 1995. Character analysis of the seed coat in Spiranthoideae and Orchidoideae, with special reference to the Diurideae (Orchidaceae). American Journal of Botany; 82: 1443-1454.
  • [17]. Aybeke, M. 2007. Pollen and seed morphology of some Ophrys L.(Orchidaceae) taxa. Journal of Plant Biology; 50: 387-395.
  • [18]. Gamarra, R, Ortú˜nez, E, Cela, PG, Guada˜no, V. 2012. Anacamptis versus Orchis (Orchidaceae): Seed micromorphology and its taxonomic significance. Plant Systematics and Evolution; 298: 597-607.
  • [19]. Jensen, RJ. 2003. The conundrum of morphometrics. Taxon; 52: 663-671.
  • [20]. Demirtaş, S, Gündüz, İ, Herman, JS. 2022. Discrimination of the sister hedgehog species Erinaceus concolor and E. roumanicus (Erinaceomorpha: Mammalia): A Geometric morphometric approach. Turkish Journal of Zoology; 46(2): 238-235.
  • [21]. Viscosi, V, Cardini, A. 2011. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PloS one; 6(10): e25630.
  • [22]. Yang, K, Wu, J, Li, X, Pang, X, Yuan, Y, Qi, G, Yang, M. 2022. Intraspecific leaf morphological variation in Quercus dentata Thunb.: a comparison of traditional and geometric morphometric methods, a pilot study. Journal of Forestry Research; 1-14.
  • [23]. Chemisquy, MA, Prevosti, FJ, Morrone, O. 2009. Seed morphology in the tribe Chloraeeae (Orchidaceae): combining traditional and geometric morphometrics. Botanical Journal of the Linnean Society; 160(2): 171-183.
  • [24]. Akbulut, MK, Şenel, G. 2016. The seeds micromorphology and morphometry of certain Dactylorhiza (Orchidaceae) species distributed in Turkey. Rendiconti Lincei; 27(4): 679-686. [25]. Rohlf, FJ. 2015. The TPS series of software. Hystrix; 26: 9-12.
  • [26]. Rohlf, FJ. tpsUtil, version 1.46. Department of Ecology and Evolution State University of New York; Stony Brook, NY, USA, 2010a.
  • [27]. Rohlf, FJ. tpsDig, version 2.16; Department of Ecology and Evolution, State University of New York at Stony Brook: Stony Brook, NY, USA, 2010b.
  • [28]. Klingenberg, CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources; 11: 353-357.
  • [29]. Rohlf, FJ, Slice DE 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology; 39: 40-59.
  • [30]. Dryden, IL, Mardia, KV. Statistical shape analysis: with applications in R, vol. 995; John Wiley: Chichester, UK, 2016.
  • [31]. Sanflippo, PG, Cardini, A, Hewitt, AW, Crowston, JG, Mackey, DA, 2009. Optic disc morphology: rethinking shape. Progress in Retinal and Eye Research; 28(4): 227-248.
  • [32]. Klingenberg, CP, Barluenga, M, Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution; 56(10): 1909-1920.
  • [33]. Hammer, Ø, Harper, DAT, Ryan, PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica; 4(1): 1-9.
  • [34]. Klingenberg, CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources; 11: 353-357.
  • [35]. Süngü Şeker, Ş, Akbulut, MK, Şenel, G. 2021. Seed morphometry and ultrastructure studies on some Turkish orchids (Orchidaceae). Microscopy Research and Technique; 84(10): 2409-2420.
  • [36]. Molvray, M, Kores, P. 1995. Character analysis of the seed coat in Spiranthoideae and Orchidoideae, with special reference to the Diurideae (Orchidaceae). American Journal of Botany; 82: 1443-1454.
  • [37]. Nakanishi, H. 2022. Seed Morphology and Dispersibility of Orchids in Warm Temperate Japan. Acta Phytotaxonomica et Geobotanica; 73(1): 19-33.
  • [38]. Gamarra, R. Ortúñez, E, Galán Cela, P, Guadaño, V. 2012. Anacamptis versus Orchis (Orchidaceae): seed micromorphology and its taxonomic significance. Plant systematics and evolution; 298(3): 597-607.
  • [39]. Süngü Şeker, Ş, Şenel, G. 2017. Comparative seed micromorphology and morphometry of some orchid species (Orchidaceae) belong to the related Anacamptis, Orchis and Neotinea genera. Biologia; 72(1): 14-23.
  • [40]. Magrini, S, Buono, S, Gransinigh, E, Rempicci, M, Onofri, S, Scoppola, A. Outline analysis for identifying Limodorum species from seeds. In: Nimis, PL, Vignes Lebbe, R, (eds.) Tools for identifying biodiversity. Edizioni Università di Trieste (EUT), Trieste, 2010, pp. 249–250.
  • [41]. Bersweden, L, Viruel, J, Schatz, B, Harland, J, Gargiulo, R, Cowan, RS, ... Fay, MF. 2021. Microsatellites and petal morphology reveal new patterns of admixture in Orchis hybrid zones. American journal of botany; 108(8): 1388-1404.
  • [42]. Arditti, J, Michaud, J, Healey, P. 1980. Morphometry of orchid seeds. II. Native Californian and related species of Calypso, Cephalanthera, Corallorhiza and Epipactis. American Journal of Botany; 67: 347-360.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Şenay Süngü Şeker 0000-0003-4993-988X

Publication Date September 29, 2022
Published in Issue Year 2022

Cite

APA Süngü Şeker, Ş. (2022). Seed Geometric Morphometrics of Neottioid Orchids. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18(3), 295-301. https://doi.org/10.18466/cbayarfbe.1108191
AMA Süngü Şeker Ş. Seed Geometric Morphometrics of Neottioid Orchids. CBUJOS. September 2022;18(3):295-301. doi:10.18466/cbayarfbe.1108191
Chicago Süngü Şeker, Şenay. “Seed Geometric Morphometrics of Neottioid Orchids”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18, no. 3 (September 2022): 295-301. https://doi.org/10.18466/cbayarfbe.1108191.
EndNote Süngü Şeker Ş (September 1, 2022) Seed Geometric Morphometrics of Neottioid Orchids. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18 3 295–301.
IEEE Ş. Süngü Şeker, “Seed Geometric Morphometrics of Neottioid Orchids”, CBUJOS, vol. 18, no. 3, pp. 295–301, 2022, doi: 10.18466/cbayarfbe.1108191.
ISNAD Süngü Şeker, Şenay. “Seed Geometric Morphometrics of Neottioid Orchids”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18/3 (September 2022), 295-301. https://doi.org/10.18466/cbayarfbe.1108191.
JAMA Süngü Şeker Ş. Seed Geometric Morphometrics of Neottioid Orchids. CBUJOS. 2022;18:295–301.
MLA Süngü Şeker, Şenay. “Seed Geometric Morphometrics of Neottioid Orchids”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 18, no. 3, 2022, pp. 295-01, doi:10.18466/cbayarfbe.1108191.
Vancouver Süngü Şeker Ş. Seed Geometric Morphometrics of Neottioid Orchids. CBUJOS. 2022;18(3):295-301.