Experimental and DFT-based investigation of structural, spectroscopic, and electronic features of 6-Chloroquinoline
Year 2023,
, 271 - 281, 30.09.2023
Etem Kose
,
Fehmi Bardak
Abstract
In this study, molecular structure, spectroscopic, and electronic features of 6-chloroquinoline were studied via experimental techniques of FT-IR, UV-Vis, 1H and 13C NMR and electronic structure theory calculations with DFT/B3LYP method and 6-311++G(d,p) basis set combination. The vibrational modes were assigned based on the potential energy distributions through the VEDA program. The gauge-invariant atomic orbital method was utilized to obtain nuclear magnetic resonance properties and chemical shifts and provided in comparison to the experimental data. Frontier molecular orbital properties and electronic absorption spectral properties, hence UV-Vis spectrum, were obtained by TD-DFT modeling. The chemical reactivity of the compound was explored based on frontier molecular orbital properties, molecular electrostatic potential surface characteristics, and atomic charge analysis. It has been achieved that the chlorine substitution significantly alters the reactive nature of quinoline moiety.
Supporting Institution
Manisa Celal Bayar University Research Projects Coordination Office
Project Number
FBE–2017/139, FBE-2011/070, and FBE-2017/148)
Thanks
This study has been supported by the Manisa Celal Bayar University Research Projects Coordination Office through Project Grant Number: FBE–2017/139, FBE-2011/070, and FBE-2017/148). The numerical calculations reported in this paper were fully/partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).
References
- [1] R. Gupta, A. K. Gupta, S. Paul, and P. L. Kachroo, “Synthesis and biological activities of some 2-chloro-6/8-substituted-3-(3-alkyll aryl-5, 6-dihydro-s-triazolo-[3, 4-h][1, 3, 4] thiadiazol-6-yl) quinolines,” Indian J. Chem., vol. 37B, pp. 1211–1213, 1998.
- [2] R. Gupta, A. K. Gupta, S. Paul, and P. Somal, “Microwave-assisted synthesis and biological activities of some 7/9-substituted-4-(3-alkyl/aryl-5, 6-dihydro-s-triazolo [3, 4-b][1, 3, 4] thiadiazol-6-yl) tetrazolo [1, 5-a] quinolines,” Indian J. Chem., vol. 39B, pp. 847–852, 2000.
- [3] D. Dubé et al., “Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530,” Bioorganic Med. Chem. Lett., vol. 8, no. 10, pp. 1255–1260, 1998, doi: 10.1016/S0960-894X(98)00201-7.
- [4] S. Tewari, P. M. S. Chauhan, A. P. Bhaduri, N. Fatima, and R. K. Chatterjee, “Syntheses and antifilarial profile of 7-chloro-4(substituted amino) quinolines: A new class of antifilarial agents,” Bioorganic Med. Chem. Lett., vol. 10, no. 13, pp. 1409–1412, 2000, doi: 10.1016/S0960-894X(00)00255-9.
- [5] M. Fujita, K. Chiba, Y. Tominaga, and K. Hino, “7-(2-Aminomethyl-1-azetidinyl)-4-oxoquinoline-3-carboxylic Acids as Potent Antibacterial Agents: Design, Synthesis, and Antibacterial Activity.,” Chem. Pharm. Bull., vol. 46, no. 5, pp. 787–796, 1998, doi: 10.1248/cpb.46.787.
- [6] M. Kidwai, K. R. Bhushan, P. Sapra, R. K. Saxena, and R. Gupta, “Alumina-supported synthesis of antibacterial quinolines using microwaves,” Bioorganic Med. Chem., vol. 8, no. 1, 2000, doi: 10.1016/S0968-0896(99)00256-4.
- [7] J. Ziegler, R. Linck, and D. W. Wright, “Heme aggregation inhibitors: Antimalarial drugs targeting an essential biomineralization process,” Stud. Nat. Prod. Chem., vol. 25, pp. 327–366, 2001, doi: 10.1016/S1572-5995(01)80011-9.
- [8] F. M. D. Ismail, M. J. Dascombe, P. Carr, S. A. M. Mérette, and P. Rouault, “Novel aryl-bis-quinolines with antimalarial activity in-vivo,” J. Pharm. Pharmacol., vol. 50, no. 5, pp. 483–492, 1998, doi: 10.1111/j.2042-7158.1998.tb06189.x.
- [9] O. Famin, M. Krugliak, and H. Ginsburg, “Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs,” Biochem. Pharmacol., vol. 58, no. 1, pp. 59–68, 1999, doi: 10.1016/S0006-2952(99)00059-3.
- [10] K. M. Khan et al., “Syntheses and cytotoxic, antimicrobial, antifungal and cardiovascular activity of new quinoline derivatives,” Arzneimittelforschung, vol. 50, no. 10, pp. 915–924, 2000, doi: 10.1055/s-0031-1300313.
- [11] L. W. Deady, J. Desneves, A. Kaye, G. Finlay, B. Baguley, and W. Denny, “Positioning of the carboxamide side chain in 11-oxo-11H-indeno[1,2-b]quinolinecarboxamide anticancer agents: Effects on cytotoxicity,” Bioorganic Med. Chem., vol. 9, no. 2, pp. 445–452, 2001, doi: 10.1016/S0968-0896(00)00264-9.
- [12] L. Strekowski et al., “Synthesis and Quantitative Structure-Activity Relationship Analysis of 2-(Aryl or Heteroaryl)quinolin-4-amines, a New Class of Anti-HIV-1 Agents,” J. Med. Chem., vol. 34, no. 5, pp. 1739–1746, 1991, doi: 10.1021/jm00109a031.
[13] V. Arjunan, P. Ravindran, T. Rani, and S. Mohan, “FTIR, FT-Raman, FT-NMR, ab initio and DFT electronic structure investigation on 8-chloroquinoline and 8-nitroquinoline,” J. Mol. Struct., vol. 988, no. 1, pp. 91–101, 2011, doi: 10.1016/j.molstruc.2010.12.032.
- [14] V. Arjunan, I. Saravanan, P. Ravindran, and S. Mohan, “Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline.,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 74, no. 2, pp. 375–84, Oct. 2009, doi: 10.1016/j.saa.2009.06.028.
- [15] S. Sivaprakash, S. Prakash, S. Mohan, and S. P. Jose, “Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline,” J. Mol. Struct., vol. 1149, pp. 835–845, 2017, doi: 10.1016/j.molstruc.2017.08.060.
- [16] G. Oanca, J. Stare, A. G. Todirascu, D. Creanga, and D. O. Dorohoi, “Substituent influence on the spectra of some benzo[f]quinoline derivatives,” J. Mol. Struct., vol. 1126, pp. 158–164, Dec. 2016, doi: 10.1016/J.MOLSTRUC.2016.03.072.
- [17] M. Kumru, A. Altun, M. Kocademir, V. Küçük, T. Bardakçı, and B. Şaşmaz, “Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV–Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde,” J. Mol. Struct., vol. 1125, pp. 302–309, 2016, doi: 10.1016/j.molstruc.2016.06.066.
- [18] V. Arjunan, S. Mohan, P. S. Balamourougane, and P. Ravindran, “Quantum chemical and spectroscopic investigations of 5-aminoquinoline,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 74, no. 5, pp. 1215–1223, 2009, doi: 10.1016/j.saa.2009.09.039.
- [19] M. J. Frisch et al., “Gaussian 16 Revision A.03.” Gaussian, Inc., Wallingford, CT, 2016.
- [20] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B, vol. 45, no. 23, pp. 13244–13249, Jun. 1992, [Online]. Available:http://link.aps.org/doi/10.1103/PhysRevB.45.13244.
- [21] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, vol. 37, no. 2, pp. 785–789, Jan. 1988, [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.37.785.
- [22] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648–5652, 1993, doi: 10.1063/1.464913.
- [23] N. Sundaraganesan, S. Ilakiamani, H. Saleem, P. M. Wojciechowski, and D. Michalska, “FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine.,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 61, no. 13–14, pp. 2995–3001, Oct. 2005, doi: 10.1016/j.saa.2004.11.016.
- [24] J. B. Foresman and A. Frisch, “Exploring chemistry with electronic structure methods, 1996,” Gaussian Inc, Pittsburgh, PA, pp. 98–99, 1996.
- [25] M. H. Jamróz, “Vibrational energy distribution analysis (VEDA): scopes and limitations.,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 114, pp. 220–230, Oct. 2013, doi: 10.1016/j.saa.2013.05.096.
- [26] R. Dennington, T. Keith, and J. Millam, GaussView, Version 5. 2009.
- [27] R. Ditchfield, “Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility,” J. Chem. Phys., vol. 56, no. 11, pp. 5688–5691, 1972, doi: 10.1063/1.1677088.
- [28] K. Wolinski, J. F. Hinton, and P. Pulay, “Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations,” J. Am. Chem. Soc., vol. 112, no. 23, pp. 8251–8260, Nov. 1990, doi: 10.1021/ja00179a005.
- [29] N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, “Software News and Updates cclib : A Library for Package-Independent Computational Chemistry Algorithms,” J. Comput. Chem., vol. 29, no. 5, pp. 839–845, 2008, doi: 10.1002/jcc.20823.
- [30] NIST Web: http://cccbdb.nist.gov/vibscalejust.asp, “http://cccbdb.nist.gov/vibscalejust.asp,” 2018. .
- [31] SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology), “SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology),” 2018. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.
- [32] R. Kimmel, M. Nečas, and R. Vícha, “2,4-Dichloroquinoline,” Acta Crystallogr. Sect. E Struct. Reports Online, vol. 66, no. 6, pp. o261–o1261, 2010, doi: 10.1107/S160053681001576X.
- [33] J. E. Davies and A. D. Bond, “Quinoline,” Acta Crystallogr. Sect. E, vol. 57, no. 10, pp. 947–949, Oct. 2001, [Online]. Available: https://doi.org/10.1107/S1600536801014891.
- [34] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts. West Sussex, England: John Wiley & Sons Ltd., 2001.
- [35] R. M. Silverstein, F. X. Webster, and D. J. Kiemle, Spectrometric identification of organic compounds. John Wiley & Sons, 2005.
- [36] R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds. New York: Wiley, 1981.
- [37] E. Kose, A. Atac, and F. Bardak, “The structural and spectroscopic investigation of 2-chloro-3-methylquinoline by DFT method and UV–Vis, NMR and vibrational spectral techniques combined with molecular docking analysis,” J. Mol. Struct., vol. 1163, pp. 147–160, Jul. 2018, doi: 10.1016/j.molstruc.2018.02.099.
- [38] A. E. Ozel, S. Celik, and S. Akyuz, “Vibrational spectroscopic investigation of free and coordinated 5-aminoquinoline: The IR, Raman and DFT studies,” J. Mol. Struct., vol. 924, pp. 523–530, 2009, doi: 10.1016/j.molstruc.2008.12.065.
- [39] G. Varsányi, Assignments for vibrational spectra of 700 benzene derivatives. Halsted Press, 1973.
- [40] F. Bardak et al., “Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 165, pp. 33–46, Aug. 2016, doi: 10.1016/J.SAA.2016.03.050.
- [41] V. Balachandran, M. Boobalan, M. Amaladasan, and S. Velmathi, “Synthesis and vibrational spectroscopic investigation of methyl l-prolinate hydrochloride: A computational insight,” Spectrosc. Lett., vol. 47, no. 9, pp. 676–689, 2014, doi: 10.1080/00387010.2013.834456.
- [42] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts. West Sussex, England: John Wiley & Sons Ltd., 2001.
[43] M. Arivazhagan and V. Krishnakumar, “Normal coordinate analysis of 1-chloroisoquinoline and 2-methyl-8-nitroquinoline,” Indian J. Pure Appl. Phys., vol. 43, no. August, pp. 573–578, 2005.
- [44] H. Friebolin, Basic One- and Two-Dimensional NMR Spectroscopy. Wiley, 2005.
- [45] H. O. Kalinowski, S. Berger, and S. Braun, Carbon-13 NMR spectroscopy. New York: Wiley, 1988.
- [46] K. Pihlaja and E. Kleinpeter, Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis. VCH, 1994.
- [47] E. Pretsch, P. Bühlmann, and C. Affolter, Structure determination of organic compounds, Fourth, Re., vol. 40, no. 3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
- [48] P. O. Fort, D. C. G. a Pinto, C. M. M. Santos, and A. M. S. Silva, Advanced NMR techniques for structural characterization of heterocyclic structures, vol. 661, no. 2. 2007.
- [49] D. Guillaumont and S. Nakamura, “Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT),” Dye. Pigment., vol. 46, no. 2, pp. 85–92, Aug. 2000, doi: 10.1016/S0143-7208(00)00030-9.
- [50] A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases,” Phys. Rev. A, vol. 21, no. 5, pp. 1561–1572, May 1980, doi: 10.1103/PhysRevA.21.1561.
- [51] E. Runge and E. K. U. Gross, “Density-Functional Theory for Time-Dependent Systems,” Phys. Rev. Lett., vol. 52, no. 12, pp. 997–1000, Mar. 1984, Accessed: Mar. 26, 2014. [Online]. Available: http://prl.aps.org/abstract/PRL/v52/i12/p997_1.
- [52] R. Hoffmann and R. B. Woodward, “The Conservation of Orbital Symmetry,” Acc. Chem. Res., vol. 1, no. 1, pp. 17–22, 1968, doi: 10.1021/ar50001a003.
- [53] R. G. Parr and R. G. Pearson, “Absolute hardness: companion parameter to absolute electronegativity,” J. Am. Chem. Soc., vol. 105, no. 26, pp. 7512–7516, Dec. 1983, doi: 10.1021/ja00364a005.
- [54] R. G. Parr, Y. Weitao, and W. Yang, Density-Functional Theory of Atoms and Molecules. Oxford University Press, USA, 1989.
- [55] N. Okulik and A. H. Jubert, “Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs,” Internet Electron. J. Mol. Des., vol. 4, pp. 17–30, 2005, [Online]. Available: http://www.biochempress.com/av04_0017.html.
- [56] F. J. Luque, J. M. López, and M. Orozco, “Perspective on ‘Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects,’” Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta), vol. 103, no. 3–4, pp. 343–345, Feb. 2000, doi: 10.1007/s002149900013.
- [57] R. S. Mulliken, “Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I,” J. Chem. Phys., vol. 23, no. 10, pp. 1833–1840, 1955, doi: 10.1063/1.1740588.
- [58] E. Kose, F. Bardak, and A. Atac, “The investigation of fluorine substitution in difluoroanilines with focus on 2,6-difluoroaniline by spectroscopic methods, density functional theory approach, and molecular docking,” J. Mol. Struct., vol. 1196, pp. 201–214, 2019, doi: 10.1016/j.molstruc.2019.06.038.
Year 2023,
, 271 - 281, 30.09.2023
Etem Kose
,
Fehmi Bardak
Project Number
FBE–2017/139, FBE-2011/070, and FBE-2017/148)
References
- [1] R. Gupta, A. K. Gupta, S. Paul, and P. L. Kachroo, “Synthesis and biological activities of some 2-chloro-6/8-substituted-3-(3-alkyll aryl-5, 6-dihydro-s-triazolo-[3, 4-h][1, 3, 4] thiadiazol-6-yl) quinolines,” Indian J. Chem., vol. 37B, pp. 1211–1213, 1998.
- [2] R. Gupta, A. K. Gupta, S. Paul, and P. Somal, “Microwave-assisted synthesis and biological activities of some 7/9-substituted-4-(3-alkyl/aryl-5, 6-dihydro-s-triazolo [3, 4-b][1, 3, 4] thiadiazol-6-yl) tetrazolo [1, 5-a] quinolines,” Indian J. Chem., vol. 39B, pp. 847–852, 2000.
- [3] D. Dubé et al., “Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530,” Bioorganic Med. Chem. Lett., vol. 8, no. 10, pp. 1255–1260, 1998, doi: 10.1016/S0960-894X(98)00201-7.
- [4] S. Tewari, P. M. S. Chauhan, A. P. Bhaduri, N. Fatima, and R. K. Chatterjee, “Syntheses and antifilarial profile of 7-chloro-4(substituted amino) quinolines: A new class of antifilarial agents,” Bioorganic Med. Chem. Lett., vol. 10, no. 13, pp. 1409–1412, 2000, doi: 10.1016/S0960-894X(00)00255-9.
- [5] M. Fujita, K. Chiba, Y. Tominaga, and K. Hino, “7-(2-Aminomethyl-1-azetidinyl)-4-oxoquinoline-3-carboxylic Acids as Potent Antibacterial Agents: Design, Synthesis, and Antibacterial Activity.,” Chem. Pharm. Bull., vol. 46, no. 5, pp. 787–796, 1998, doi: 10.1248/cpb.46.787.
- [6] M. Kidwai, K. R. Bhushan, P. Sapra, R. K. Saxena, and R. Gupta, “Alumina-supported synthesis of antibacterial quinolines using microwaves,” Bioorganic Med. Chem., vol. 8, no. 1, 2000, doi: 10.1016/S0968-0896(99)00256-4.
- [7] J. Ziegler, R. Linck, and D. W. Wright, “Heme aggregation inhibitors: Antimalarial drugs targeting an essential biomineralization process,” Stud. Nat. Prod. Chem., vol. 25, pp. 327–366, 2001, doi: 10.1016/S1572-5995(01)80011-9.
- [8] F. M. D. Ismail, M. J. Dascombe, P. Carr, S. A. M. Mérette, and P. Rouault, “Novel aryl-bis-quinolines with antimalarial activity in-vivo,” J. Pharm. Pharmacol., vol. 50, no. 5, pp. 483–492, 1998, doi: 10.1111/j.2042-7158.1998.tb06189.x.
- [9] O. Famin, M. Krugliak, and H. Ginsburg, “Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs,” Biochem. Pharmacol., vol. 58, no. 1, pp. 59–68, 1999, doi: 10.1016/S0006-2952(99)00059-3.
- [10] K. M. Khan et al., “Syntheses and cytotoxic, antimicrobial, antifungal and cardiovascular activity of new quinoline derivatives,” Arzneimittelforschung, vol. 50, no. 10, pp. 915–924, 2000, doi: 10.1055/s-0031-1300313.
- [11] L. W. Deady, J. Desneves, A. Kaye, G. Finlay, B. Baguley, and W. Denny, “Positioning of the carboxamide side chain in 11-oxo-11H-indeno[1,2-b]quinolinecarboxamide anticancer agents: Effects on cytotoxicity,” Bioorganic Med. Chem., vol. 9, no. 2, pp. 445–452, 2001, doi: 10.1016/S0968-0896(00)00264-9.
- [12] L. Strekowski et al., “Synthesis and Quantitative Structure-Activity Relationship Analysis of 2-(Aryl or Heteroaryl)quinolin-4-amines, a New Class of Anti-HIV-1 Agents,” J. Med. Chem., vol. 34, no. 5, pp. 1739–1746, 1991, doi: 10.1021/jm00109a031.
[13] V. Arjunan, P. Ravindran, T. Rani, and S. Mohan, “FTIR, FT-Raman, FT-NMR, ab initio and DFT electronic structure investigation on 8-chloroquinoline and 8-nitroquinoline,” J. Mol. Struct., vol. 988, no. 1, pp. 91–101, 2011, doi: 10.1016/j.molstruc.2010.12.032.
- [14] V. Arjunan, I. Saravanan, P. Ravindran, and S. Mohan, “Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline.,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 74, no. 2, pp. 375–84, Oct. 2009, doi: 10.1016/j.saa.2009.06.028.
- [15] S. Sivaprakash, S. Prakash, S. Mohan, and S. P. Jose, “Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline,” J. Mol. Struct., vol. 1149, pp. 835–845, 2017, doi: 10.1016/j.molstruc.2017.08.060.
- [16] G. Oanca, J. Stare, A. G. Todirascu, D. Creanga, and D. O. Dorohoi, “Substituent influence on the spectra of some benzo[f]quinoline derivatives,” J. Mol. Struct., vol. 1126, pp. 158–164, Dec. 2016, doi: 10.1016/J.MOLSTRUC.2016.03.072.
- [17] M. Kumru, A. Altun, M. Kocademir, V. Küçük, T. Bardakçı, and B. Şaşmaz, “Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV–Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde,” J. Mol. Struct., vol. 1125, pp. 302–309, 2016, doi: 10.1016/j.molstruc.2016.06.066.
- [18] V. Arjunan, S. Mohan, P. S. Balamourougane, and P. Ravindran, “Quantum chemical and spectroscopic investigations of 5-aminoquinoline,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 74, no. 5, pp. 1215–1223, 2009, doi: 10.1016/j.saa.2009.09.039.
- [19] M. J. Frisch et al., “Gaussian 16 Revision A.03.” Gaussian, Inc., Wallingford, CT, 2016.
- [20] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B, vol. 45, no. 23, pp. 13244–13249, Jun. 1992, [Online]. Available:http://link.aps.org/doi/10.1103/PhysRevB.45.13244.
- [21] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, vol. 37, no. 2, pp. 785–789, Jan. 1988, [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.37.785.
- [22] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648–5652, 1993, doi: 10.1063/1.464913.
- [23] N. Sundaraganesan, S. Ilakiamani, H. Saleem, P. M. Wojciechowski, and D. Michalska, “FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine.,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 61, no. 13–14, pp. 2995–3001, Oct. 2005, doi: 10.1016/j.saa.2004.11.016.
- [24] J. B. Foresman and A. Frisch, “Exploring chemistry with electronic structure methods, 1996,” Gaussian Inc, Pittsburgh, PA, pp. 98–99, 1996.
- [25] M. H. Jamróz, “Vibrational energy distribution analysis (VEDA): scopes and limitations.,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 114, pp. 220–230, Oct. 2013, doi: 10.1016/j.saa.2013.05.096.
- [26] R. Dennington, T. Keith, and J. Millam, GaussView, Version 5. 2009.
- [27] R. Ditchfield, “Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility,” J. Chem. Phys., vol. 56, no. 11, pp. 5688–5691, 1972, doi: 10.1063/1.1677088.
- [28] K. Wolinski, J. F. Hinton, and P. Pulay, “Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations,” J. Am. Chem. Soc., vol. 112, no. 23, pp. 8251–8260, Nov. 1990, doi: 10.1021/ja00179a005.
- [29] N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, “Software News and Updates cclib : A Library for Package-Independent Computational Chemistry Algorithms,” J. Comput. Chem., vol. 29, no. 5, pp. 839–845, 2008, doi: 10.1002/jcc.20823.
- [30] NIST Web: http://cccbdb.nist.gov/vibscalejust.asp, “http://cccbdb.nist.gov/vibscalejust.asp,” 2018. .
- [31] SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology), “SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology),” 2018. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.
- [32] R. Kimmel, M. Nečas, and R. Vícha, “2,4-Dichloroquinoline,” Acta Crystallogr. Sect. E Struct. Reports Online, vol. 66, no. 6, pp. o261–o1261, 2010, doi: 10.1107/S160053681001576X.
- [33] J. E. Davies and A. D. Bond, “Quinoline,” Acta Crystallogr. Sect. E, vol. 57, no. 10, pp. 947–949, Oct. 2001, [Online]. Available: https://doi.org/10.1107/S1600536801014891.
- [34] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts. West Sussex, England: John Wiley & Sons Ltd., 2001.
- [35] R. M. Silverstein, F. X. Webster, and D. J. Kiemle, Spectrometric identification of organic compounds. John Wiley & Sons, 2005.
- [36] R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds. New York: Wiley, 1981.
- [37] E. Kose, A. Atac, and F. Bardak, “The structural and spectroscopic investigation of 2-chloro-3-methylquinoline by DFT method and UV–Vis, NMR and vibrational spectral techniques combined with molecular docking analysis,” J. Mol. Struct., vol. 1163, pp. 147–160, Jul. 2018, doi: 10.1016/j.molstruc.2018.02.099.
- [38] A. E. Ozel, S. Celik, and S. Akyuz, “Vibrational spectroscopic investigation of free and coordinated 5-aminoquinoline: The IR, Raman and DFT studies,” J. Mol. Struct., vol. 924, pp. 523–530, 2009, doi: 10.1016/j.molstruc.2008.12.065.
- [39] G. Varsányi, Assignments for vibrational spectra of 700 benzene derivatives. Halsted Press, 1973.
- [40] F. Bardak et al., “Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 165, pp. 33–46, Aug. 2016, doi: 10.1016/J.SAA.2016.03.050.
- [41] V. Balachandran, M. Boobalan, M. Amaladasan, and S. Velmathi, “Synthesis and vibrational spectroscopic investigation of methyl l-prolinate hydrochloride: A computational insight,” Spectrosc. Lett., vol. 47, no. 9, pp. 676–689, 2014, doi: 10.1080/00387010.2013.834456.
- [42] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts. West Sussex, England: John Wiley & Sons Ltd., 2001.
[43] M. Arivazhagan and V. Krishnakumar, “Normal coordinate analysis of 1-chloroisoquinoline and 2-methyl-8-nitroquinoline,” Indian J. Pure Appl. Phys., vol. 43, no. August, pp. 573–578, 2005.
- [44] H. Friebolin, Basic One- and Two-Dimensional NMR Spectroscopy. Wiley, 2005.
- [45] H. O. Kalinowski, S. Berger, and S. Braun, Carbon-13 NMR spectroscopy. New York: Wiley, 1988.
- [46] K. Pihlaja and E. Kleinpeter, Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis. VCH, 1994.
- [47] E. Pretsch, P. Bühlmann, and C. Affolter, Structure determination of organic compounds, Fourth, Re., vol. 40, no. 3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
- [48] P. O. Fort, D. C. G. a Pinto, C. M. M. Santos, and A. M. S. Silva, Advanced NMR techniques for structural characterization of heterocyclic structures, vol. 661, no. 2. 2007.
- [49] D. Guillaumont and S. Nakamura, “Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT),” Dye. Pigment., vol. 46, no. 2, pp. 85–92, Aug. 2000, doi: 10.1016/S0143-7208(00)00030-9.
- [50] A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases,” Phys. Rev. A, vol. 21, no. 5, pp. 1561–1572, May 1980, doi: 10.1103/PhysRevA.21.1561.
- [51] E. Runge and E. K. U. Gross, “Density-Functional Theory for Time-Dependent Systems,” Phys. Rev. Lett., vol. 52, no. 12, pp. 997–1000, Mar. 1984, Accessed: Mar. 26, 2014. [Online]. Available: http://prl.aps.org/abstract/PRL/v52/i12/p997_1.
- [52] R. Hoffmann and R. B. Woodward, “The Conservation of Orbital Symmetry,” Acc. Chem. Res., vol. 1, no. 1, pp. 17–22, 1968, doi: 10.1021/ar50001a003.
- [53] R. G. Parr and R. G. Pearson, “Absolute hardness: companion parameter to absolute electronegativity,” J. Am. Chem. Soc., vol. 105, no. 26, pp. 7512–7516, Dec. 1983, doi: 10.1021/ja00364a005.
- [54] R. G. Parr, Y. Weitao, and W. Yang, Density-Functional Theory of Atoms and Molecules. Oxford University Press, USA, 1989.
- [55] N. Okulik and A. H. Jubert, “Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs,” Internet Electron. J. Mol. Des., vol. 4, pp. 17–30, 2005, [Online]. Available: http://www.biochempress.com/av04_0017.html.
- [56] F. J. Luque, J. M. López, and M. Orozco, “Perspective on ‘Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects,’” Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta), vol. 103, no. 3–4, pp. 343–345, Feb. 2000, doi: 10.1007/s002149900013.
- [57] R. S. Mulliken, “Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I,” J. Chem. Phys., vol. 23, no. 10, pp. 1833–1840, 1955, doi: 10.1063/1.1740588.
- [58] E. Kose, F. Bardak, and A. Atac, “The investigation of fluorine substitution in difluoroanilines with focus on 2,6-difluoroaniline by spectroscopic methods, density functional theory approach, and molecular docking,” J. Mol. Struct., vol. 1196, pp. 201–214, 2019, doi: 10.1016/j.molstruc.2019.06.038.