Research Article
BibTex RIS Cite

Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization

Year 2024, , 72 - 81, 28.06.2024
https://doi.org/10.18466/cbayarfbe.1448091

Abstract

Cafestol (CFS) is present in unfiltered coffee types and exhibits antidiabetic, anti-inflammatory and anticarcinogenic properties. The ionic gelation method was used to synthesise CFS-loaded chitosan (CS), and alginate (ALG) nanoparticles with high loading efficiency. The characterization, thermal properties and surface morphology of CFS-loaded biopolymer nanoparticles were carried out by FTIR, TGA and SEM, respectively. The encapsulation efficiency of the synthesised CFS-loaded biopolymer nanoparticles was found to be as 53% (CFS-loaded ALGNPs) and 92% (CFS-loaded CSNPs) by high-pressure liquid chromatography. The particle sizes determined using Malvern Zeta Sizer Ultra were 97 ± 4.04 (CFS-loaded CSNPs) and 81 ± 6.51 (CFS-loaded ALGNPs).

Supporting Institution

BAP Project No. 21692

Project Number

BAP Project No. 21692

Thanks

Acknowledgements This research is supported by grants from the Ege University Scientific Research Coordination Office (BAP Project No. 21692).

References

  • [1]. George S.E; Ramalakshmi K.; Mohan Rao LJ. (2008) A perception on health benefits of coffee. Crit Rev Food Sci Nutr 48, 464-486.
  • [2]. Ren Y.; Wang C.; Xu J.; Wang S. (2019) Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int J Mol Sci 20, 4238.
  • [3]. Moeenfard M.; Cortez A.; Machado V.; et al. (2016) Anti‐angiogenic properties of Cafestol and Kahweol palmitate diterpene esters. J Cell Biochem 117, 2748-2756.
  • [4]. Mellbye F.B.; Jeppesen P.B.; Hermansen K.; Gregersen S. (2015) Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J Nat Prod 78, 2447-2451.
  • [5]. Mellbye F.B.; Jeppesen P.B.; Shokouh P.; et al. (2017) Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J Nat Prod 80, 2353-2359.
  • [6]. Loureiro L.M.R.; Reis C.E.G.; da Costa T.H.M. (2018) Effects of coffee components on muscle glycogen recovery: a systematic review. Int J Sport Nutr Exerc Metab 28, 284-293.
  • [7]. Moolgavkar S.H. (1978) The multistage theory of carcinogenesis and the age distribution of cancer in man. J Natl Cancer Inst 61, 49-52.
  • [8]. Kotowski U.; Heiduschka G.; Seemann R.; et al. (2015) Effect of the coffee ingredient cafestol on head and neck squamous cell carcinoma cell lines. Strahlenther Onkol 191, 511-517.
  • [9]. Lima C.S.; Spindola D.G.; Bechara A.; et al. (2017) Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed Pharmacother 92, 1045-1054.
  • [10]. Lee K.J.; Choi J.H.; Jeong H.G. (2007) Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice. Food Chem Toxicol 45, 2118-2125.
  • [11]. Ballıca G.; Çevikbaş H.; Ulusoy S.; Yıldırım Y. (2020) The synthesis of novel Cafestol loaded zinc oxide nanoparticles and their characterization. Appl Nanosci 10, 4263-4272.
  • [12]. Thomas S.; Pius A.; Gopi S. (2020) Handbook of Chitin and Chitosan: Volume 2: Composites and Nanocomposites from Chitin and Chitosan, Manufacturing and Characterisations. Elsevier.
  • [13]. Zargar V.; Asghari M.; Dashti A. (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Reviews 2, 204-226.
  • [14]. Zhou X.; Guo L.; Shi D.; Duan S.; Li J. (2019) Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res Lett 14, 1-9.
  • [15]. He T.; Wang W.; Chen B.; Wang J.; Liang Q.; Chen B. (2020) 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym 236, 116094.
  • [16]. Hamedinasab H.; Rezayan A.H.; Mellat M.; Mashreghi M.; Jaafari M.R. (2020) Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol 156:1455-1463.
  • [17]. Buyuk N.I.; Arayici P.P.; Derman S.; Mustafaeva Z.; Yucel S. (2020) Synthesis of chitosan nanoparticles for controlled release of amiodarone. Indian J Pharm Sci 82:131-138.
  • [18]. Gelperina S.; Kisich K.; Iseman M.D.; Heifets L. (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172, 1487-1490.
  • [19]. Paques J.P.; van der Linden E.; van Rijn C.J.; Sagis L.M. (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 209:63-171.
  • [20]. Chiu H.I.; Ayub A.D.; Mat Yusuf S.N.A.; et al. (2020) Docetaxel-loaded disulfide cross-linked nanoparticles derived from thiolated sodium alginate for colon cancer drug delivery. Pharmaceutics 12(1), 1-25.
  • [21]. Jayapal J.J.; Dhanaraj S. (2017) Exemestane loaded alginate nanoparticles for cancer treatment: Formulation and in vitro evaluation. Int J Biol Macromol 105, 416-421.
  • [22]. Fleten, K. G., Hyldbakk, A., Einen, C., Benjakul, S., Strand, B. L., Davies, C. D. L., ... & Flatmark, K. (2022) Alginate Microsphere Encapsulation of Drug-Loaded Nanoparticles: A Novel Strategy for Intraperitoneal Drug Delivery. Marine Drugs 20(12), 744.
  • [23]. Joseph, J. J., Sangeetha, D., & Shivashankar, M. (2019) In vitro release and cytotoxic studies of novel alginate nanocarrier for the antitumor drug: Sunitinib. Regen Eng Transl Med, 5, 220-227.
  • [24]. Rai, V. K., Kumar, A., Pradhan, D., Halder, J., Rajwar, T. K., Sarangi, M. K., ... & Rath, G. Spray-Dried (2024) Mucoadhesive Re-dispersible Gargle of Chlorhexidine for Improved Response Against Throat Infection: Formulation Development, In Vitro and In Vivo Evaluation. AAPS PharmSciTech, 25(2), 31.
  • [25]. Calvo P.; Remuñan-López C.; Vila-Jato J.L.; Alonso M.J. (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14, 1431-1436. 25.2
  • [26]. Vila A.; Sánchez A.; Janes K et al. (2004) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57, 123-131.
  • [27]. Rajaonarivony M.; Vauthier C.; Couarraze G.; Puisieux F.; Couvreur P. (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82, 912-917.
  • [28]. Dias R.C.E.; Campanha F.G.; Vieira L.G.E et al. (2010) Evaluation of kahweol and cafestol in coffee tissues and roasted coffee by a new high-performance liquid chromatography methodology. J Agric Food Chem 58, 88-93.
  • [29]. Silva J.A.; Borges N.; Santos A.; Alves A. (2012) Method validation for cafestol and kahweol quantification in coffee brews by HPLC-DAD. Food Anal Methods 5, 1404–1410.
  • [30]. Guideline IHT (2005) Validation of analytical procedures: text and methodology. Q2 (R1), 1(20), 05.
  • [31]. Oh J.W.; Chun S.C.; Chandrasekaran M. (2019) Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agron J 9(1), 21.
  • [32]. Jain A.; Thakur K.; Sharma G.; Kush P.; Jain U.K. (2016) Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles. Carbohydr Polym 137, 65-74.
  • [33]. Çakır M.A.; Icyer N.C.; Tornuk F. (2020) Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int J Biol Macromol 151, 230-238.
  • [34]. Paques J.P.; Sagis L.M.; van Rijn C.J.; van der Linden E. (2014) Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocoll 40, 182-188.
  • [35]. Mokhtari S.; Jafari S.M.; Assadpour E. (2017) Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem 229, 286-295.
  • [36]. Lunardi C.N.; Gomes A.J.; Rocha F.S.; De Tommaso J.; Patience G.S. (2021) Experimental methods in chemical engineering: Zeta potential. Can J Chem Eng 99, 627–639.
  • [37]. Bakhshi M.; Ebrahimi F.; Nazarian S et al. (2017) Nano-encapsulation of chicken immunoglobulin (IgY) in sodium alginate nanoparticles: In vitro characterization. Biologicals 49, 69-75.
  • [38]. de Castro Spadari C. (2019) Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis. Int J Nanomed 14, 5187.
  • [39]. Sarei F.; Dounighi N.M., Zolfagharian H.; Khaki P.; Bidhendi S.M. (2013) Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J Pharm Sci 75, 442.
  • [40]. Silvestro, I., Francolini, I., Di Lisio, V., Martinelli, A., Pietrelli, L., Scotto d’Abusco, A., ... & Piozzi, A. (2020). Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials, 13(16), 3577.
  • [41]. Costa, M. J., Marques, A. M., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2018). Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food hydrocolloids, 81, 442-448.
  • [42]. Terrile E.A.; Marcheafave G.G.; Oliveira S.G et al. (2016) Chemometric analysis of UV characteristic profile and infrared fingerprint variations of coffea Arabica green beans under different space management treatments. J Braz Chem Soc 27, 1254-1263.
  • [43]. Derkus B.; Emregul E., Emregul K.C.; Yucesan C. (2014) Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing. Sens Actuators B Chem 192, 294-302.
  • [44]. El-Shamy O.A.; El-Azabawy R.E.; El-Azabawy O. (2019) Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J Nanomater Article ID 6326012:1-8
  • [45]. Brito D.; Campana-Filho S.P. (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465, 73-82.
  • [46]. Corazzari I.; Nisticò R.; Turci F et al. (2015) Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym Degrad Stab 112, 1-9.
  • [47]. Zhang H.; Zhao Y. (2015) Preparation, characterization and evaluation of tea polyphenol–Zn complex loaded β-chitosan nanoparticles. Food Hydrocoll 48, 260-273.
  • [48]. Michailidou G.; Ainali N.M.; Xanthopoulou E et al. (2020) Effect of poly (vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability. Polym J 12, 1101-1023.
  • [49]. Swamy T.M.; Ramaraj B.; Lee J.H. (2008) Sodium alginate and its blends with starch: thermal and morphological properties. J Appl Polym Sci 109, 4075-4081.
  • [50]. Salisu A.; Sanagi M.M.; Abu Naim A et al. (2016) Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polym Bull 73, 519-537.
  • [51]. Gokila S.; Gomathi T.; Sudha P.N.; Anil S. (2017) Removal of the heavy metal ion chromiuim (VI) using Chitosan and Alginate nanocomposites. Int J Biol Macromol 104, 1459-1468.
  • [52]. Güncüm E.; Işıklan N.; Anlaş C et al. (2018) Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin–an antimicrobial drug. Artif Cells Nanomed Biotechnol 46, 964-973.
  • [53]. Bootz A.; Vogel V.; Schubert D.; Kreuter J. (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57, 369-375.
  • [54]. Daemi H.; Barikani M. (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran 19, 2023-2028.
  • [55]. Gazori T.; Khoshayand M.R.; Azizi E et al. (2009) Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym. 77, 599-606.
  • [56]. Nallamuthu I.; Devi A.; Khanum F. (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10, 203-211.
Year 2024, , 72 - 81, 28.06.2024
https://doi.org/10.18466/cbayarfbe.1448091

Abstract

Project Number

BAP Project No. 21692

References

  • [1]. George S.E; Ramalakshmi K.; Mohan Rao LJ. (2008) A perception on health benefits of coffee. Crit Rev Food Sci Nutr 48, 464-486.
  • [2]. Ren Y.; Wang C.; Xu J.; Wang S. (2019) Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int J Mol Sci 20, 4238.
  • [3]. Moeenfard M.; Cortez A.; Machado V.; et al. (2016) Anti‐angiogenic properties of Cafestol and Kahweol palmitate diterpene esters. J Cell Biochem 117, 2748-2756.
  • [4]. Mellbye F.B.; Jeppesen P.B.; Hermansen K.; Gregersen S. (2015) Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J Nat Prod 78, 2447-2451.
  • [5]. Mellbye F.B.; Jeppesen P.B.; Shokouh P.; et al. (2017) Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J Nat Prod 80, 2353-2359.
  • [6]. Loureiro L.M.R.; Reis C.E.G.; da Costa T.H.M. (2018) Effects of coffee components on muscle glycogen recovery: a systematic review. Int J Sport Nutr Exerc Metab 28, 284-293.
  • [7]. Moolgavkar S.H. (1978) The multistage theory of carcinogenesis and the age distribution of cancer in man. J Natl Cancer Inst 61, 49-52.
  • [8]. Kotowski U.; Heiduschka G.; Seemann R.; et al. (2015) Effect of the coffee ingredient cafestol on head and neck squamous cell carcinoma cell lines. Strahlenther Onkol 191, 511-517.
  • [9]. Lima C.S.; Spindola D.G.; Bechara A.; et al. (2017) Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed Pharmacother 92, 1045-1054.
  • [10]. Lee K.J.; Choi J.H.; Jeong H.G. (2007) Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice. Food Chem Toxicol 45, 2118-2125.
  • [11]. Ballıca G.; Çevikbaş H.; Ulusoy S.; Yıldırım Y. (2020) The synthesis of novel Cafestol loaded zinc oxide nanoparticles and their characterization. Appl Nanosci 10, 4263-4272.
  • [12]. Thomas S.; Pius A.; Gopi S. (2020) Handbook of Chitin and Chitosan: Volume 2: Composites and Nanocomposites from Chitin and Chitosan, Manufacturing and Characterisations. Elsevier.
  • [13]. Zargar V.; Asghari M.; Dashti A. (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Reviews 2, 204-226.
  • [14]. Zhou X.; Guo L.; Shi D.; Duan S.; Li J. (2019) Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res Lett 14, 1-9.
  • [15]. He T.; Wang W.; Chen B.; Wang J.; Liang Q.; Chen B. (2020) 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym 236, 116094.
  • [16]. Hamedinasab H.; Rezayan A.H.; Mellat M.; Mashreghi M.; Jaafari M.R. (2020) Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol 156:1455-1463.
  • [17]. Buyuk N.I.; Arayici P.P.; Derman S.; Mustafaeva Z.; Yucel S. (2020) Synthesis of chitosan nanoparticles for controlled release of amiodarone. Indian J Pharm Sci 82:131-138.
  • [18]. Gelperina S.; Kisich K.; Iseman M.D.; Heifets L. (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172, 1487-1490.
  • [19]. Paques J.P.; van der Linden E.; van Rijn C.J.; Sagis L.M. (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 209:63-171.
  • [20]. Chiu H.I.; Ayub A.D.; Mat Yusuf S.N.A.; et al. (2020) Docetaxel-loaded disulfide cross-linked nanoparticles derived from thiolated sodium alginate for colon cancer drug delivery. Pharmaceutics 12(1), 1-25.
  • [21]. Jayapal J.J.; Dhanaraj S. (2017) Exemestane loaded alginate nanoparticles for cancer treatment: Formulation and in vitro evaluation. Int J Biol Macromol 105, 416-421.
  • [22]. Fleten, K. G., Hyldbakk, A., Einen, C., Benjakul, S., Strand, B. L., Davies, C. D. L., ... & Flatmark, K. (2022) Alginate Microsphere Encapsulation of Drug-Loaded Nanoparticles: A Novel Strategy for Intraperitoneal Drug Delivery. Marine Drugs 20(12), 744.
  • [23]. Joseph, J. J., Sangeetha, D., & Shivashankar, M. (2019) In vitro release and cytotoxic studies of novel alginate nanocarrier for the antitumor drug: Sunitinib. Regen Eng Transl Med, 5, 220-227.
  • [24]. Rai, V. K., Kumar, A., Pradhan, D., Halder, J., Rajwar, T. K., Sarangi, M. K., ... & Rath, G. Spray-Dried (2024) Mucoadhesive Re-dispersible Gargle of Chlorhexidine for Improved Response Against Throat Infection: Formulation Development, In Vitro and In Vivo Evaluation. AAPS PharmSciTech, 25(2), 31.
  • [25]. Calvo P.; Remuñan-López C.; Vila-Jato J.L.; Alonso M.J. (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14, 1431-1436. 25.2
  • [26]. Vila A.; Sánchez A.; Janes K et al. (2004) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57, 123-131.
  • [27]. Rajaonarivony M.; Vauthier C.; Couarraze G.; Puisieux F.; Couvreur P. (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82, 912-917.
  • [28]. Dias R.C.E.; Campanha F.G.; Vieira L.G.E et al. (2010) Evaluation of kahweol and cafestol in coffee tissues and roasted coffee by a new high-performance liquid chromatography methodology. J Agric Food Chem 58, 88-93.
  • [29]. Silva J.A.; Borges N.; Santos A.; Alves A. (2012) Method validation for cafestol and kahweol quantification in coffee brews by HPLC-DAD. Food Anal Methods 5, 1404–1410.
  • [30]. Guideline IHT (2005) Validation of analytical procedures: text and methodology. Q2 (R1), 1(20), 05.
  • [31]. Oh J.W.; Chun S.C.; Chandrasekaran M. (2019) Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agron J 9(1), 21.
  • [32]. Jain A.; Thakur K.; Sharma G.; Kush P.; Jain U.K. (2016) Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles. Carbohydr Polym 137, 65-74.
  • [33]. Çakır M.A.; Icyer N.C.; Tornuk F. (2020) Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int J Biol Macromol 151, 230-238.
  • [34]. Paques J.P.; Sagis L.M.; van Rijn C.J.; van der Linden E. (2014) Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocoll 40, 182-188.
  • [35]. Mokhtari S.; Jafari S.M.; Assadpour E. (2017) Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem 229, 286-295.
  • [36]. Lunardi C.N.; Gomes A.J.; Rocha F.S.; De Tommaso J.; Patience G.S. (2021) Experimental methods in chemical engineering: Zeta potential. Can J Chem Eng 99, 627–639.
  • [37]. Bakhshi M.; Ebrahimi F.; Nazarian S et al. (2017) Nano-encapsulation of chicken immunoglobulin (IgY) in sodium alginate nanoparticles: In vitro characterization. Biologicals 49, 69-75.
  • [38]. de Castro Spadari C. (2019) Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis. Int J Nanomed 14, 5187.
  • [39]. Sarei F.; Dounighi N.M., Zolfagharian H.; Khaki P.; Bidhendi S.M. (2013) Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J Pharm Sci 75, 442.
  • [40]. Silvestro, I., Francolini, I., Di Lisio, V., Martinelli, A., Pietrelli, L., Scotto d’Abusco, A., ... & Piozzi, A. (2020). Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials, 13(16), 3577.
  • [41]. Costa, M. J., Marques, A. M., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2018). Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food hydrocolloids, 81, 442-448.
  • [42]. Terrile E.A.; Marcheafave G.G.; Oliveira S.G et al. (2016) Chemometric analysis of UV characteristic profile and infrared fingerprint variations of coffea Arabica green beans under different space management treatments. J Braz Chem Soc 27, 1254-1263.
  • [43]. Derkus B.; Emregul E., Emregul K.C.; Yucesan C. (2014) Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing. Sens Actuators B Chem 192, 294-302.
  • [44]. El-Shamy O.A.; El-Azabawy R.E.; El-Azabawy O. (2019) Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J Nanomater Article ID 6326012:1-8
  • [45]. Brito D.; Campana-Filho S.P. (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465, 73-82.
  • [46]. Corazzari I.; Nisticò R.; Turci F et al. (2015) Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym Degrad Stab 112, 1-9.
  • [47]. Zhang H.; Zhao Y. (2015) Preparation, characterization and evaluation of tea polyphenol–Zn complex loaded β-chitosan nanoparticles. Food Hydrocoll 48, 260-273.
  • [48]. Michailidou G.; Ainali N.M.; Xanthopoulou E et al. (2020) Effect of poly (vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability. Polym J 12, 1101-1023.
  • [49]. Swamy T.M.; Ramaraj B.; Lee J.H. (2008) Sodium alginate and its blends with starch: thermal and morphological properties. J Appl Polym Sci 109, 4075-4081.
  • [50]. Salisu A.; Sanagi M.M.; Abu Naim A et al. (2016) Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polym Bull 73, 519-537.
  • [51]. Gokila S.; Gomathi T.; Sudha P.N.; Anil S. (2017) Removal of the heavy metal ion chromiuim (VI) using Chitosan and Alginate nanocomposites. Int J Biol Macromol 104, 1459-1468.
  • [52]. Güncüm E.; Işıklan N.; Anlaş C et al. (2018) Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin–an antimicrobial drug. Artif Cells Nanomed Biotechnol 46, 964-973.
  • [53]. Bootz A.; Vogel V.; Schubert D.; Kreuter J. (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57, 369-375.
  • [54]. Daemi H.; Barikani M. (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran 19, 2023-2028.
  • [55]. Gazori T.; Khoshayand M.R.; Azizi E et al. (2009) Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym. 77, 599-606.
  • [56]. Nallamuthu I.; Devi A.; Khanum F. (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10, 203-211.
There are 56 citations in total.

Details

Primary Language English
Subjects Nanochemistry
Journal Section Articles
Authors

Özge Vardar This is me 0000-0002-7281-7445

Ayça Mehmetoğlu Al This is me 0000-0002-4991-7384

Yeliz Yıldırım 0000-0002-3014-4510

Project Number BAP Project No. 21692
Publication Date June 28, 2024
Submission Date March 6, 2024
Acceptance Date June 27, 2024
Published in Issue Year 2024

Cite

APA Vardar, Ö., Mehmetoğlu Al, A., & Yıldırım, Y. (2024). Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(2), 72-81. https://doi.org/10.18466/cbayarfbe.1448091
AMA Vardar Ö, Mehmetoğlu Al A, Yıldırım Y. Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. CBUJOS. June 2024;20(2):72-81. doi:10.18466/cbayarfbe.1448091
Chicago Vardar, Özge, Ayça Mehmetoğlu Al, and Yeliz Yıldırım. “Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, no. 2 (June 2024): 72-81. https://doi.org/10.18466/cbayarfbe.1448091.
EndNote Vardar Ö, Mehmetoğlu Al A, Yıldırım Y (June 1, 2024) Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 2 72–81.
IEEE Ö. Vardar, A. Mehmetoğlu Al, and Y. Yıldırım, “Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization”, CBUJOS, vol. 20, no. 2, pp. 72–81, 2024, doi: 10.18466/cbayarfbe.1448091.
ISNAD Vardar, Özge et al. “Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/2 (June 2024), 72-81. https://doi.org/10.18466/cbayarfbe.1448091.
JAMA Vardar Ö, Mehmetoğlu Al A, Yıldırım Y. Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. CBUJOS. 2024;20:72–81.
MLA Vardar, Özge et al. “Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 20, no. 2, 2024, pp. 72-81, doi:10.18466/cbayarfbe.1448091.
Vancouver Vardar Ö, Mehmetoğlu Al A, Yıldırım Y. Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. CBUJOS. 2024;20(2):72-81.