Cafestol (CFS) is present in unfiltered coffee types and exhibits antidiabetic, anti-inflammatory and anticarcinogenic properties. The ionic gelation method was used to synthesise CFS-loaded chitosan (CS), and alginate (ALG) nanoparticles with high loading efficiency. The characterization, thermal properties and surface morphology of CFS-loaded biopolymer nanoparticles were carried out by FTIR, TGA and SEM, respectively. The encapsulation efficiency of the synthesised CFS-loaded biopolymer nanoparticles was found to be as 53% (CFS-loaded ALGNPs) and 92% (CFS-loaded CSNPs) by high-pressure liquid chromatography. The particle sizes determined using Malvern Zeta Sizer Ultra were 97 ± 4.04 (CFS-loaded CSNPs) and 81 ± 6.51 (CFS-loaded ALGNPs).
Acknowledgements
This research is supported by grants from the Ege University Scientific Research Coordination Office (BAP Project No. 21692).
References
[1]. George S.E; Ramalakshmi K.; Mohan Rao LJ. (2008) A perception on health benefits of coffee. Crit Rev Food Sci Nutr 48, 464-486.
[2]. Ren Y.; Wang C.; Xu J.; Wang S. (2019) Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int J Mol Sci 20, 4238.
[3]. Moeenfard M.; Cortez A.; Machado V.; et al. (2016) Anti‐angiogenic properties of Cafestol and Kahweol palmitate diterpene esters. J Cell Biochem 117, 2748-2756.
[4]. Mellbye F.B.; Jeppesen P.B.; Hermansen K.; Gregersen S. (2015) Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J Nat Prod 78, 2447-2451.
[5]. Mellbye F.B.; Jeppesen P.B.; Shokouh P.; et al. (2017) Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J Nat Prod 80, 2353-2359.
[6]. Loureiro L.M.R.; Reis C.E.G.; da Costa T.H.M. (2018) Effects of coffee components on muscle glycogen recovery: a systematic review. Int J Sport Nutr Exerc Metab 28, 284-293.
[7]. Moolgavkar S.H. (1978) The multistage theory of carcinogenesis and the age distribution of cancer in man. J Natl Cancer Inst 61, 49-52.
[8]. Kotowski U.; Heiduschka G.; Seemann R.; et al. (2015) Effect of the coffee ingredient cafestol on head and neck squamous cell carcinoma cell lines. Strahlenther Onkol 191, 511-517.
[9]. Lima C.S.; Spindola D.G.; Bechara A.; et al. (2017) Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed Pharmacother 92, 1045-1054.
[10]. Lee K.J.; Choi J.H.; Jeong H.G. (2007) Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice. Food Chem Toxicol 45, 2118-2125.
[11]. Ballıca G.; Çevikbaş H.; Ulusoy S.; Yıldırım Y. (2020) The synthesis of novel Cafestol loaded zinc oxide nanoparticles and their characterization. Appl Nanosci 10, 4263-4272.
[12]. Thomas S.; Pius A.; Gopi S. (2020) Handbook of Chitin and Chitosan: Volume 2: Composites and Nanocomposites from Chitin and Chitosan, Manufacturing and Characterisations. Elsevier.
[13]. Zargar V.; Asghari M.; Dashti A. (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Reviews 2, 204-226.
[14]. Zhou X.; Guo L.; Shi D.; Duan S.; Li J. (2019) Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res Lett 14, 1-9.
[15]. He T.; Wang W.; Chen B.; Wang J.; Liang Q.; Chen B. (2020) 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym 236, 116094.
[16]. Hamedinasab H.; Rezayan A.H.; Mellat M.; Mashreghi M.; Jaafari M.R. (2020) Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol 156:1455-1463.
[17]. Buyuk N.I.; Arayici P.P.; Derman S.; Mustafaeva Z.; Yucel S. (2020) Synthesis of chitosan nanoparticles for controlled release of amiodarone. Indian J Pharm Sci 82:131-138.
[18]. Gelperina S.; Kisich K.; Iseman M.D.; Heifets L. (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172, 1487-1490.
[19]. Paques J.P.; van der Linden E.; van Rijn C.J.; Sagis L.M. (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 209:63-171.
[20]. Chiu H.I.; Ayub A.D.; Mat Yusuf S.N.A.; et al. (2020) Docetaxel-loaded disulfide cross-linked nanoparticles derived from thiolated sodium alginate for colon cancer drug delivery. Pharmaceutics 12(1), 1-25.
[21]. Jayapal J.J.; Dhanaraj S. (2017) Exemestane loaded alginate nanoparticles for cancer treatment: Formulation and in vitro evaluation. Int J Biol Macromol 105, 416-421.
[22]. Fleten, K. G., Hyldbakk, A., Einen, C., Benjakul, S., Strand, B. L., Davies, C. D. L., ... & Flatmark, K. (2022) Alginate Microsphere Encapsulation of Drug-Loaded Nanoparticles: A Novel Strategy for Intraperitoneal Drug Delivery. Marine Drugs 20(12), 744.
[23]. Joseph, J. J., Sangeetha, D., & Shivashankar, M. (2019) In vitro release and cytotoxic studies of novel alginate nanocarrier for the antitumor drug: Sunitinib. Regen Eng Transl Med, 5, 220-227.
[24]. Rai, V. K., Kumar, A., Pradhan, D., Halder, J., Rajwar, T. K., Sarangi, M. K., ... & Rath, G. Spray-Dried (2024) Mucoadhesive Re-dispersible Gargle of Chlorhexidine for Improved Response Against Throat Infection: Formulation Development, In Vitro and In Vivo Evaluation. AAPS PharmSciTech, 25(2), 31.
[25]. Calvo P.; Remuñan-López C.; Vila-Jato J.L.; Alonso M.J. (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14, 1431-1436. 25.2
[26]. Vila A.; Sánchez A.; Janes K et al. (2004) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57, 123-131.
[27]. Rajaonarivony M.; Vauthier C.; Couarraze G.; Puisieux F.; Couvreur P. (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82, 912-917.
[28]. Dias R.C.E.; Campanha F.G.; Vieira L.G.E et al. (2010) Evaluation of kahweol and cafestol in coffee tissues and roasted coffee by a new high-performance liquid chromatography methodology. J Agric Food Chem 58, 88-93.
[29]. Silva J.A.; Borges N.; Santos A.; Alves A. (2012) Method validation for cafestol and kahweol quantification in coffee brews by HPLC-DAD. Food Anal Methods 5, 1404–1410.
[30]. Guideline IHT (2005) Validation of analytical procedures: text and methodology. Q2 (R1), 1(20), 05.
[31]. Oh J.W.; Chun S.C.; Chandrasekaran M. (2019) Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agron J 9(1), 21.
[33]. Çakır M.A.; Icyer N.C.; Tornuk F. (2020) Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int J Biol Macromol 151, 230-238.
[34]. Paques J.P.; Sagis L.M.; van Rijn C.J.; van der Linden E. (2014) Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocoll 40, 182-188.
[35]. Mokhtari S.; Jafari S.M.; Assadpour E. (2017) Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem 229, 286-295.
[36]. Lunardi C.N.; Gomes A.J.; Rocha F.S.; De Tommaso J.; Patience G.S. (2021) Experimental methods in chemical engineering: Zeta potential. Can J Chem Eng 99, 627–639.
[37]. Bakhshi M.; Ebrahimi F.; Nazarian S et al. (2017) Nano-encapsulation of chicken immunoglobulin (IgY) in sodium alginate nanoparticles: In vitro characterization. Biologicals 49, 69-75.
[38]. de Castro Spadari C. (2019) Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis. Int J Nanomed 14, 5187.
[39]. Sarei F.; Dounighi N.M., Zolfagharian H.; Khaki P.; Bidhendi S.M. (2013) Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J Pharm Sci 75, 442.
[40]. Silvestro, I., Francolini, I., Di Lisio, V., Martinelli, A., Pietrelli, L., Scotto d’Abusco, A., ... & Piozzi, A. (2020). Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials, 13(16), 3577.
[41]. Costa, M. J., Marques, A. M., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2018). Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food hydrocolloids, 81, 442-448.
[42]. Terrile E.A.; Marcheafave G.G.; Oliveira S.G et al. (2016) Chemometric analysis of UV characteristic profile and infrared fingerprint variations of coffea Arabica green beans under different space management treatments. J Braz Chem Soc 27, 1254-1263.
[43]. Derkus B.; Emregul E., Emregul K.C.; Yucesan C. (2014) Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing. Sens Actuators B Chem 192, 294-302.
[44]. El-Shamy O.A.; El-Azabawy R.E.; El-Azabawy O. (2019) Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J Nanomater Article ID 6326012:1-8
[45]. Brito D.; Campana-Filho S.P. (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465, 73-82.
[46]. Corazzari I.; Nisticò R.; Turci F et al. (2015) Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym Degrad Stab 112, 1-9.
[47]. Zhang H.; Zhao Y. (2015) Preparation, characterization and evaluation of tea polyphenol–Zn complex loaded β-chitosan nanoparticles. Food Hydrocoll 48, 260-273.
[48]. Michailidou G.; Ainali N.M.; Xanthopoulou E et al. (2020) Effect of poly (vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability. Polym J 12, 1101-1023.
[49]. Swamy T.M.; Ramaraj B.; Lee J.H. (2008) Sodium alginate and its blends with starch: thermal and morphological properties. J Appl Polym Sci 109, 4075-4081.
[50]. Salisu A.; Sanagi M.M.; Abu Naim A et al. (2016) Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polym Bull 73, 519-537.
[51]. Gokila S.; Gomathi T.; Sudha P.N.; Anil S. (2017) Removal of the heavy metal ion chromiuim (VI) using Chitosan and Alginate nanocomposites. Int J Biol Macromol 104, 1459-1468.
[52]. Güncüm E.; Işıklan N.; Anlaş C et al. (2018) Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin–an antimicrobial drug. Artif Cells Nanomed Biotechnol 46, 964-973.
[53]. Bootz A.; Vogel V.; Schubert D.; Kreuter J. (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57, 369-375.
[54]. Daemi H.; Barikani M. (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran 19, 2023-2028.
[55]. Gazori T.; Khoshayand M.R.; Azizi E et al. (2009) Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym. 77, 599-606.
[56]. Nallamuthu I.; Devi A.; Khanum F. (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10, 203-211.
[1]. George S.E; Ramalakshmi K.; Mohan Rao LJ. (2008) A perception on health benefits of coffee. Crit Rev Food Sci Nutr 48, 464-486.
[2]. Ren Y.; Wang C.; Xu J.; Wang S. (2019) Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int J Mol Sci 20, 4238.
[3]. Moeenfard M.; Cortez A.; Machado V.; et al. (2016) Anti‐angiogenic properties of Cafestol and Kahweol palmitate diterpene esters. J Cell Biochem 117, 2748-2756.
[4]. Mellbye F.B.; Jeppesen P.B.; Hermansen K.; Gregersen S. (2015) Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J Nat Prod 78, 2447-2451.
[5]. Mellbye F.B.; Jeppesen P.B.; Shokouh P.; et al. (2017) Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J Nat Prod 80, 2353-2359.
[6]. Loureiro L.M.R.; Reis C.E.G.; da Costa T.H.M. (2018) Effects of coffee components on muscle glycogen recovery: a systematic review. Int J Sport Nutr Exerc Metab 28, 284-293.
[7]. Moolgavkar S.H. (1978) The multistage theory of carcinogenesis and the age distribution of cancer in man. J Natl Cancer Inst 61, 49-52.
[8]. Kotowski U.; Heiduschka G.; Seemann R.; et al. (2015) Effect of the coffee ingredient cafestol on head and neck squamous cell carcinoma cell lines. Strahlenther Onkol 191, 511-517.
[9]. Lima C.S.; Spindola D.G.; Bechara A.; et al. (2017) Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed Pharmacother 92, 1045-1054.
[10]. Lee K.J.; Choi J.H.; Jeong H.G. (2007) Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice. Food Chem Toxicol 45, 2118-2125.
[11]. Ballıca G.; Çevikbaş H.; Ulusoy S.; Yıldırım Y. (2020) The synthesis of novel Cafestol loaded zinc oxide nanoparticles and their characterization. Appl Nanosci 10, 4263-4272.
[12]. Thomas S.; Pius A.; Gopi S. (2020) Handbook of Chitin and Chitosan: Volume 2: Composites and Nanocomposites from Chitin and Chitosan, Manufacturing and Characterisations. Elsevier.
[13]. Zargar V.; Asghari M.; Dashti A. (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Reviews 2, 204-226.
[14]. Zhou X.; Guo L.; Shi D.; Duan S.; Li J. (2019) Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res Lett 14, 1-9.
[15]. He T.; Wang W.; Chen B.; Wang J.; Liang Q.; Chen B. (2020) 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym 236, 116094.
[16]. Hamedinasab H.; Rezayan A.H.; Mellat M.; Mashreghi M.; Jaafari M.R. (2020) Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol 156:1455-1463.
[17]. Buyuk N.I.; Arayici P.P.; Derman S.; Mustafaeva Z.; Yucel S. (2020) Synthesis of chitosan nanoparticles for controlled release of amiodarone. Indian J Pharm Sci 82:131-138.
[18]. Gelperina S.; Kisich K.; Iseman M.D.; Heifets L. (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172, 1487-1490.
[19]. Paques J.P.; van der Linden E.; van Rijn C.J.; Sagis L.M. (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 209:63-171.
[20]. Chiu H.I.; Ayub A.D.; Mat Yusuf S.N.A.; et al. (2020) Docetaxel-loaded disulfide cross-linked nanoparticles derived from thiolated sodium alginate for colon cancer drug delivery. Pharmaceutics 12(1), 1-25.
[21]. Jayapal J.J.; Dhanaraj S. (2017) Exemestane loaded alginate nanoparticles for cancer treatment: Formulation and in vitro evaluation. Int J Biol Macromol 105, 416-421.
[22]. Fleten, K. G., Hyldbakk, A., Einen, C., Benjakul, S., Strand, B. L., Davies, C. D. L., ... & Flatmark, K. (2022) Alginate Microsphere Encapsulation of Drug-Loaded Nanoparticles: A Novel Strategy for Intraperitoneal Drug Delivery. Marine Drugs 20(12), 744.
[23]. Joseph, J. J., Sangeetha, D., & Shivashankar, M. (2019) In vitro release and cytotoxic studies of novel alginate nanocarrier for the antitumor drug: Sunitinib. Regen Eng Transl Med, 5, 220-227.
[24]. Rai, V. K., Kumar, A., Pradhan, D., Halder, J., Rajwar, T. K., Sarangi, M. K., ... & Rath, G. Spray-Dried (2024) Mucoadhesive Re-dispersible Gargle of Chlorhexidine for Improved Response Against Throat Infection: Formulation Development, In Vitro and In Vivo Evaluation. AAPS PharmSciTech, 25(2), 31.
[25]. Calvo P.; Remuñan-López C.; Vila-Jato J.L.; Alonso M.J. (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14, 1431-1436. 25.2
[26]. Vila A.; Sánchez A.; Janes K et al. (2004) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57, 123-131.
[27]. Rajaonarivony M.; Vauthier C.; Couarraze G.; Puisieux F.; Couvreur P. (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82, 912-917.
[28]. Dias R.C.E.; Campanha F.G.; Vieira L.G.E et al. (2010) Evaluation of kahweol and cafestol in coffee tissues and roasted coffee by a new high-performance liquid chromatography methodology. J Agric Food Chem 58, 88-93.
[29]. Silva J.A.; Borges N.; Santos A.; Alves A. (2012) Method validation for cafestol and kahweol quantification in coffee brews by HPLC-DAD. Food Anal Methods 5, 1404–1410.
[30]. Guideline IHT (2005) Validation of analytical procedures: text and methodology. Q2 (R1), 1(20), 05.
[31]. Oh J.W.; Chun S.C.; Chandrasekaran M. (2019) Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agron J 9(1), 21.
[33]. Çakır M.A.; Icyer N.C.; Tornuk F. (2020) Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int J Biol Macromol 151, 230-238.
[34]. Paques J.P.; Sagis L.M.; van Rijn C.J.; van der Linden E. (2014) Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocoll 40, 182-188.
[35]. Mokhtari S.; Jafari S.M.; Assadpour E. (2017) Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem 229, 286-295.
[36]. Lunardi C.N.; Gomes A.J.; Rocha F.S.; De Tommaso J.; Patience G.S. (2021) Experimental methods in chemical engineering: Zeta potential. Can J Chem Eng 99, 627–639.
[37]. Bakhshi M.; Ebrahimi F.; Nazarian S et al. (2017) Nano-encapsulation of chicken immunoglobulin (IgY) in sodium alginate nanoparticles: In vitro characterization. Biologicals 49, 69-75.
[38]. de Castro Spadari C. (2019) Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis. Int J Nanomed 14, 5187.
[39]. Sarei F.; Dounighi N.M., Zolfagharian H.; Khaki P.; Bidhendi S.M. (2013) Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J Pharm Sci 75, 442.
[40]. Silvestro, I., Francolini, I., Di Lisio, V., Martinelli, A., Pietrelli, L., Scotto d’Abusco, A., ... & Piozzi, A. (2020). Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials, 13(16), 3577.
[41]. Costa, M. J., Marques, A. M., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2018). Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food hydrocolloids, 81, 442-448.
[42]. Terrile E.A.; Marcheafave G.G.; Oliveira S.G et al. (2016) Chemometric analysis of UV characteristic profile and infrared fingerprint variations of coffea Arabica green beans under different space management treatments. J Braz Chem Soc 27, 1254-1263.
[43]. Derkus B.; Emregul E., Emregul K.C.; Yucesan C. (2014) Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing. Sens Actuators B Chem 192, 294-302.
[44]. El-Shamy O.A.; El-Azabawy R.E.; El-Azabawy O. (2019) Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J Nanomater Article ID 6326012:1-8
[45]. Brito D.; Campana-Filho S.P. (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465, 73-82.
[46]. Corazzari I.; Nisticò R.; Turci F et al. (2015) Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym Degrad Stab 112, 1-9.
[47]. Zhang H.; Zhao Y. (2015) Preparation, characterization and evaluation of tea polyphenol–Zn complex loaded β-chitosan nanoparticles. Food Hydrocoll 48, 260-273.
[48]. Michailidou G.; Ainali N.M.; Xanthopoulou E et al. (2020) Effect of poly (vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability. Polym J 12, 1101-1023.
[49]. Swamy T.M.; Ramaraj B.; Lee J.H. (2008) Sodium alginate and its blends with starch: thermal and morphological properties. J Appl Polym Sci 109, 4075-4081.
[50]. Salisu A.; Sanagi M.M.; Abu Naim A et al. (2016) Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polym Bull 73, 519-537.
[51]. Gokila S.; Gomathi T.; Sudha P.N.; Anil S. (2017) Removal of the heavy metal ion chromiuim (VI) using Chitosan and Alginate nanocomposites. Int J Biol Macromol 104, 1459-1468.
[52]. Güncüm E.; Işıklan N.; Anlaş C et al. (2018) Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin–an antimicrobial drug. Artif Cells Nanomed Biotechnol 46, 964-973.
[53]. Bootz A.; Vogel V.; Schubert D.; Kreuter J. (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57, 369-375.
[54]. Daemi H.; Barikani M. (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran 19, 2023-2028.
[55]. Gazori T.; Khoshayand M.R.; Azizi E et al. (2009) Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym. 77, 599-606.
[56]. Nallamuthu I.; Devi A.; Khanum F. (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10, 203-211.
Vardar, Ö., Mehmetoğlu Al, A., & Yıldırım, Y. (2024). Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. Celal Bayar University Journal of Science, 20(2), 72-81. https://doi.org/10.18466/cbayarfbe.1448091
AMA
Vardar Ö, Mehmetoğlu Al A, Yıldırım Y. Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. CBUJOS. June 2024;20(2):72-81. doi:10.18466/cbayarfbe.1448091
Chicago
Vardar, Özge, Ayça Mehmetoğlu Al, and Yeliz Yıldırım. “Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization”. Celal Bayar University Journal of Science 20, no. 2 (June 2024): 72-81. https://doi.org/10.18466/cbayarfbe.1448091.
EndNote
Vardar Ö, Mehmetoğlu Al A, Yıldırım Y (June 1, 2024) Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. Celal Bayar University Journal of Science 20 2 72–81.
IEEE
Ö. Vardar, A. Mehmetoğlu Al, and Y. Yıldırım, “Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization”, CBUJOS, vol. 20, no. 2, pp. 72–81, 2024, doi: 10.18466/cbayarfbe.1448091.
ISNAD
Vardar, Özge et al. “Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization”. Celal Bayar University Journal of Science 20/2 (June 2024), 72-81. https://doi.org/10.18466/cbayarfbe.1448091.
JAMA
Vardar Ö, Mehmetoğlu Al A, Yıldırım Y. Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. CBUJOS. 2024;20:72–81.
MLA
Vardar, Özge et al. “Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization”. Celal Bayar University Journal of Science, vol. 20, no. 2, 2024, pp. 72-81, doi:10.18466/cbayarfbe.1448091.
Vancouver
Vardar Ö, Mehmetoğlu Al A, Yıldırım Y. Coffee Active Ingredient Loaded Biopolymer Nanoparticles: Synthesis and Characterization. CBUJOS. 2024;20(2):72-81.