Research Article
BibTex RIS Cite

The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance

Year 2024, , 40 - 59, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1514216

Abstract

In last decade, the fifth generation of telecom network (5G) has been a new era as a result of fast-growing mobile industry. Unlike its predecessors, 5G will not only provide faster, better mobile broadband experience, but also broaden communication network with new services such as device-to-device communications or connecting IoT devices and users. For this purpose, 5G aims to achieve massive network capacity, ultra-low latency, higher data speed and greater network reliability. According to the report of ITU World Radiocommunication Conference 2019 (WRC-19), several new frequency bands between 20-70 GHz, were announced for allocation of 5G. Frequencies in the Ka-band (27-40 GHz) are particularly attractive due to their low atmospheric attenuation. At the specified frequency range i.e., millimeter wave band, antenna design for 5G applications is very crucial to provide high gain and efficiency as well as broadband communication which is indispensable for high-speed data traffic. At this point, Microstrip patch antennas, stand out amongst others because of their numerous attractive features. In this work, the effect of substrate dielectric constant and thickness to the Rectangular Microstrip Antenna (RMA) performance is examined for high frequency 5G applications. The RMA is designed to operate at 38 GHz and antenna performance has been analyzed according to various dielectric substrates, such as RT5880, RO3003, FR4, RT6006 and RT6010, considering different dielectric constants, thicknesses, and tangential losses. All designs and analyses have been accomplished by using ANSYS HFSS (High-Frequency Structure Simulator) and comparative results of the work are presented.

References

  • [1]. Internet: Cisco “Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014–2019”, 2015. Available: www.Cisco.com.
  • [2]. Internet: Cisco, “Global 2016 Year in Review”, 2016. Available: www.Cisco.com.
  • [3]. Agiwal, M., Roy, A., & Saxena, N. 2016. Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617-1655.
  • [4]. Yang, Y., Xu, J., Shi, G., & Wang, C. X. 5G Wireless Systems. Springer International Publishing, 2018; pp 2-7.
  • [5]. Demirci M., 5G Haberleşme Teknolojisi için Mikroşerit Yama Anten Tasarımı, Master's Thesis, Osmaniye Korkut Ata Üniversitesi, Osmaniye, 2020.
  • [6]. Internet: Aselsan, “Yeni Nesil Geniş Bantlı Haberleşme Teknolojileri, 5G Nedir?”, ISSN 1300-2473, 35(111), 2022; pp 26-30. Available: www.aselsan.com.tr
  • [7]. Parchin, N. O., Mohamed, H. G., Moussa, K. H., See, C. H., Abd-Alhameed, R. A., Alwadai, N. M., & Amar, A. S. 2023. An efficient antenna system with improved radiation for multi-standard/multi-mode 5G cellular communications. Scientific Reports, 13(1), 4179.
  • [8]. Raj, T., Mishra, R., Kumar, P., & Kapoor, A. 2023. Advances in MIMO antenna design for 5G: A comprehensive review. Sensors, 23(14), 6329.
  • [9]. Krishnamoorthy, R., Kumar, U. S., Swathi, G., Begum, M. A., Nancharaiah, B., & Sagar, K. D. 2023. Metamaterial inspired quad-port multi-antenna system for millimeter wave 5G applications. Journal of Infrared, Millimeter, and Terahertz Waves, 44(5), 346-364.
  • [10]. Al-Azzawi, Z. F., AbdulSattar, R. K., Muhsin, M. Y., Azeez, M. A., Salim, A. J., & Ali, J. K. 2023. Designing eight-port antenna array for multi-band MIMO applications in 5G smartphones. Journal of Telecommunications and Information Technology, (4).
  • [11]. Chbeine, M., Azmani, M., & Astito, A. Advanced UWB MIMO Antenna with Wide Bandwidth and High-Efficiency Performance for 5G. 11th International Conference on Signal Processing and Integrated Networks (SPIN), IEEE. 2024, March, pp. 227-232.
  • [12]. Ibrahim, S. K., Singh, M. J., Al-Bawri, S. S., Ibrahim, H. H., Islam, M. T., Islam, M. S. & Abdulkawi, W. M. 2023. Design, challenges and developments for 5G massive MIMO antenna systems at sub 6-GHz band: a review. Nanomaterials, 13(3), 520.
  • [13]. Cao, T. N., Nguyen, M. T., Phan, H. L., Nguyen, D. D., Vu, D. L., Nguyen, T. Q. H., & Kim, J. M. 2023. Millimeter‐wave broadband MIMO antenna using metasurfaces for 5G cellular networks. International Journal of RF and Microwave Computer‐Aided Engineering, 2023(1), Article ID 9938824. https://doi.org/10.1155/2023/9938824
  • [14]. Sharaf, M. H., Zaki, A. I., Hamad, R. K., & Omar, M. M. (2020). A novel dual-band (38/60 GHz) patch antenna for 5G mobile handsets. Sensors, 20(9), 2541.
  • [15]. Demirci, M., Ermiş, S. 2021. 5G teknolojisi için çift bantlı (28/38 GHz) dikdörtgen mikroşerit anten tasarımı. Bilişim Teknolojileri Dergisi, 14(2), 171-181.
  • [16]. Haneef, S. R., Selvaperumal, S. K., & Jayapal, V. 2020. High gain rectangular single patch antenna at mmwave band. International Journal of Advanced Science and Technology, 29(1), pp. 1311- 1325.
  • [17]. Ramli, N., Noor, S. K., Khalifa, T., & Abd Rahman, N. H. 2020. Design and performance analysis of different dielectric substrate based microstrip patch antenna for 5G applications. International Journal of Advanced Computer Science and Applications, 11(8).
  • [18]. Ahmad, I., Sun, H., Zhang Y. & Samad, A. High Gain Rectangular Slot Microstrip Patch Antenna for 5G mm-Wave Wireless Communication, 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China, 2020, pp. 723-727, doi: 10.1109/ICCCS49078.2020.9118602.
  • [19]. Sree, M. F. A., Abd Elazeem, M. H., & Swelam, W. Dual Band Patch Antenna Based on Letter Slotted DGS for 5G Sub-6GHz Application. In Journal of Physics: Conference Series, IOP Publishing, Vol. 2128, No. 1, 2021, December, p. 012008.
  • [20]. Marasco, I., Niro, G., Mastronardi, V. M., Rizzi, F., D’Orazio, A., De Vittorio, M., & Grande, M. 2022. A compact evolved antenna for 5G communications. Scientific reports, 12(1), 10327.
  • [21]. Yadav, J., Sharma, S., & Arora, M. 2022. A paper on microstrip patch antenna for 5G applications. Materials Today: Proceedings, 66, 3430-3437.
  • [22]. Ermiş, S., & Demirci, M. 2023. Improving the performance of patch antenna by applying bandwidth enhancement techniques for 5G applications. Tehnički glasnik, 17(3), 305-312.
  • [23]. Kumar, L., Nath, V., & Reddy, B. V. R. 2023. Triple-band stub loaded patch antenna with high gain for 5G Sub-6 GHz, WLAN and WIMAX applications using DGS. Facta Universitatis, Series: Electronics and Energetics, 36(2), 171-188.
  • [24]. Es-saleh, A., Bendaoued, M., Lakrit, S., Das, S., Atounti, M., & Faize, A. 2023. A novel fractal patch antenna using Defected Ground Structure (DGS) with high isolation for 5G applications. Journal of Nano- and Electronic Physics, 15(3), 03012(4pp).
  • [25]. Balanis, C. A. Antenna Theory: Analysis and Design. Second Edition, John Wiley & Sons, 2016, pp 722-784.
  • [26]. Garg, R. Microstrip Antenna Design Handbook. Artech House, 2001, pp 253-314.
Year 2024, , 40 - 59, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1514216

Abstract

References

  • [1]. Internet: Cisco “Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014–2019”, 2015. Available: www.Cisco.com.
  • [2]. Internet: Cisco, “Global 2016 Year in Review”, 2016. Available: www.Cisco.com.
  • [3]. Agiwal, M., Roy, A., & Saxena, N. 2016. Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617-1655.
  • [4]. Yang, Y., Xu, J., Shi, G., & Wang, C. X. 5G Wireless Systems. Springer International Publishing, 2018; pp 2-7.
  • [5]. Demirci M., 5G Haberleşme Teknolojisi için Mikroşerit Yama Anten Tasarımı, Master's Thesis, Osmaniye Korkut Ata Üniversitesi, Osmaniye, 2020.
  • [6]. Internet: Aselsan, “Yeni Nesil Geniş Bantlı Haberleşme Teknolojileri, 5G Nedir?”, ISSN 1300-2473, 35(111), 2022; pp 26-30. Available: www.aselsan.com.tr
  • [7]. Parchin, N. O., Mohamed, H. G., Moussa, K. H., See, C. H., Abd-Alhameed, R. A., Alwadai, N. M., & Amar, A. S. 2023. An efficient antenna system with improved radiation for multi-standard/multi-mode 5G cellular communications. Scientific Reports, 13(1), 4179.
  • [8]. Raj, T., Mishra, R., Kumar, P., & Kapoor, A. 2023. Advances in MIMO antenna design for 5G: A comprehensive review. Sensors, 23(14), 6329.
  • [9]. Krishnamoorthy, R., Kumar, U. S., Swathi, G., Begum, M. A., Nancharaiah, B., & Sagar, K. D. 2023. Metamaterial inspired quad-port multi-antenna system for millimeter wave 5G applications. Journal of Infrared, Millimeter, and Terahertz Waves, 44(5), 346-364.
  • [10]. Al-Azzawi, Z. F., AbdulSattar, R. K., Muhsin, M. Y., Azeez, M. A., Salim, A. J., & Ali, J. K. 2023. Designing eight-port antenna array for multi-band MIMO applications in 5G smartphones. Journal of Telecommunications and Information Technology, (4).
  • [11]. Chbeine, M., Azmani, M., & Astito, A. Advanced UWB MIMO Antenna with Wide Bandwidth and High-Efficiency Performance for 5G. 11th International Conference on Signal Processing and Integrated Networks (SPIN), IEEE. 2024, March, pp. 227-232.
  • [12]. Ibrahim, S. K., Singh, M. J., Al-Bawri, S. S., Ibrahim, H. H., Islam, M. T., Islam, M. S. & Abdulkawi, W. M. 2023. Design, challenges and developments for 5G massive MIMO antenna systems at sub 6-GHz band: a review. Nanomaterials, 13(3), 520.
  • [13]. Cao, T. N., Nguyen, M. T., Phan, H. L., Nguyen, D. D., Vu, D. L., Nguyen, T. Q. H., & Kim, J. M. 2023. Millimeter‐wave broadband MIMO antenna using metasurfaces for 5G cellular networks. International Journal of RF and Microwave Computer‐Aided Engineering, 2023(1), Article ID 9938824. https://doi.org/10.1155/2023/9938824
  • [14]. Sharaf, M. H., Zaki, A. I., Hamad, R. K., & Omar, M. M. (2020). A novel dual-band (38/60 GHz) patch antenna for 5G mobile handsets. Sensors, 20(9), 2541.
  • [15]. Demirci, M., Ermiş, S. 2021. 5G teknolojisi için çift bantlı (28/38 GHz) dikdörtgen mikroşerit anten tasarımı. Bilişim Teknolojileri Dergisi, 14(2), 171-181.
  • [16]. Haneef, S. R., Selvaperumal, S. K., & Jayapal, V. 2020. High gain rectangular single patch antenna at mmwave band. International Journal of Advanced Science and Technology, 29(1), pp. 1311- 1325.
  • [17]. Ramli, N., Noor, S. K., Khalifa, T., & Abd Rahman, N. H. 2020. Design and performance analysis of different dielectric substrate based microstrip patch antenna for 5G applications. International Journal of Advanced Computer Science and Applications, 11(8).
  • [18]. Ahmad, I., Sun, H., Zhang Y. & Samad, A. High Gain Rectangular Slot Microstrip Patch Antenna for 5G mm-Wave Wireless Communication, 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China, 2020, pp. 723-727, doi: 10.1109/ICCCS49078.2020.9118602.
  • [19]. Sree, M. F. A., Abd Elazeem, M. H., & Swelam, W. Dual Band Patch Antenna Based on Letter Slotted DGS for 5G Sub-6GHz Application. In Journal of Physics: Conference Series, IOP Publishing, Vol. 2128, No. 1, 2021, December, p. 012008.
  • [20]. Marasco, I., Niro, G., Mastronardi, V. M., Rizzi, F., D’Orazio, A., De Vittorio, M., & Grande, M. 2022. A compact evolved antenna for 5G communications. Scientific reports, 12(1), 10327.
  • [21]. Yadav, J., Sharma, S., & Arora, M. 2022. A paper on microstrip patch antenna for 5G applications. Materials Today: Proceedings, 66, 3430-3437.
  • [22]. Ermiş, S., & Demirci, M. 2023. Improving the performance of patch antenna by applying bandwidth enhancement techniques for 5G applications. Tehnički glasnik, 17(3), 305-312.
  • [23]. Kumar, L., Nath, V., & Reddy, B. V. R. 2023. Triple-band stub loaded patch antenna with high gain for 5G Sub-6 GHz, WLAN and WIMAX applications using DGS. Facta Universitatis, Series: Electronics and Energetics, 36(2), 171-188.
  • [24]. Es-saleh, A., Bendaoued, M., Lakrit, S., Das, S., Atounti, M., & Faize, A. 2023. A novel fractal patch antenna using Defected Ground Structure (DGS) with high isolation for 5G applications. Journal of Nano- and Electronic Physics, 15(3), 03012(4pp).
  • [25]. Balanis, C. A. Antenna Theory: Analysis and Design. Second Edition, John Wiley & Sons, 2016, pp 722-784.
  • [26]. Garg, R. Microstrip Antenna Design Handbook. Artech House, 2001, pp 253-314.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics
Journal Section Articles
Authors

Seda Ermıs 0000-0002-3105-7080

Publication Date December 29, 2024
Submission Date July 10, 2024
Acceptance Date October 10, 2024
Published in Issue Year 2024

Cite

APA Ermıs, S. (2024). The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(4), 40-59. https://doi.org/10.18466/cbayarfbe.1514216
AMA Ermıs S. The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance. CBUJOS. December 2024;20(4):40-59. doi:10.18466/cbayarfbe.1514216
Chicago Ermıs, Seda. “The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, no. 4 (December 2024): 40-59. https://doi.org/10.18466/cbayarfbe.1514216.
EndNote Ermıs S (December 1, 2024) The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 4 40–59.
IEEE S. Ermıs, “The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance”, CBUJOS, vol. 20, no. 4, pp. 40–59, 2024, doi: 10.18466/cbayarfbe.1514216.
ISNAD Ermıs, Seda. “The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/4 (December 2024), 40-59. https://doi.org/10.18466/cbayarfbe.1514216.
JAMA Ermıs S. The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance. CBUJOS. 2024;20:40–59.
MLA Ermıs, Seda. “The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 20, no. 4, 2024, pp. 40-59, doi:10.18466/cbayarfbe.1514216.
Vancouver Ermıs S. The Effect of Substrate Dielectric Constant and Thickness on Millimeter Wave Band Patch Antenna Performance. CBUJOS. 2024;20(4):40-59.