Research Article
BibTex RIS Cite

Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal

Year 2024, , 60 - 66, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1517079

Abstract

In this study, the use of activated carbon produced from agricultural waste via the hydrothermal method for the removal of methylene blue from solution was examined. Pistachio roasting facility waste was selected as the agricultural waste. For activated carbon production, carbonized products were treated in a hydrothermal device in the presence of an activator for various durations. During processes conducted at a constant temperature, high pressure was achieved, allowing the activated carbon to attain a high adsorption capacity. The results showed that the sample with a KOH impregnation ratio of 1:1, treated in a hydrothermal device for 480 minutes at 160 °C, was able to remove methylene blue with a 99.85% extraction yield in a solution with a 350 ppm methylene blue concentration.

Ethical Statement

There are no ethical issues after the publication of this manuscript.

Supporting Institution

FÜBAP

Project Number

MF.19.02.

Thanks

This study was supported by Fırat University Scientific Research Projects Coordination Unit (FÜBAP) under the Rectorate of Fırat University within the scope of the project titled “Activated carbon production by hydrothermal method from pistachio roasting plant wastes” with the code number MF.19.02.

References

  • [1]. Ntuli, V., Hapazari, I., 2013, Sustainable waste management by production of activated carbon from agroforestry residues. South African Journal of Science. 2013;109(1/2), Art. #1077, 6 pages. http://dx.doi.org/10.1590/sajs.2013/1077
  • [2]. Açıkyıldız, M., Gürses, A., Karaca, S., 2014, Preparation and characterization of activated carbon from plant wastes with chemical activation, Microporous and Mesoporous Materials ,198 (2014) 45–49
  • [3]. Hossain, M.Z., Wu, W., Xu, W.Z., Chowdhury, M.B.I., Jhawar, A.K., Machin, D., Charpentier, P.A., 2018, High Surface Area Mesoporous Activated Carbon from Hemp Bast Fibre Using Hydrothermal Processing, Journal of Carbon Research. doi:10.20944/preprints201804.0372.v1
  • [4]. Jain, A., Balasubramanian, R., Srinivasan, M.P., 2015, Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review, Chemical Engineering Journal 283 (2016) 789–805
  • [5]. Hayashi, J., Kazehaya, A., Muroyama, K., Watkinson, A. P., 2000. Preparation of Activated Carbon From Lignin By Chemical Activation, Carbon, 38, 1873-1878.
  • [6]. Hendawy, A.N., 2003. Influence of HNO3 Oxidation on the Structure and Adsorptive Properties of Corncob-Based Activated Carbon, Carbon, 41, 713-722
  • [7]. Pradhan, B.K., Sandle, N.K., 1999. Effect Of Different Oxidizing Agent Treatments On The Surface Properties Of Activated Carbons, Carbon, 37, 1323-1332
  • [8]. Hameed, B.H., Ahmad, A.L., Latiff, K.N.A., 2007. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust, Dyes and Pigments, 75, 143-149
  • [9]. Duman, G., Onal, Y., Okutucu, C., Onenc, S., Yanik, J., 2009. Production of Activated Carbon from Pine Cone and Evaluation of Its Physical, Chemical, and Adsorption Properties, Energy & Fuels, 23, 2197-2204.
  • [10]. Aci, F., Nebioglu, M., Arslan, M., Imamoglu, M., Zengin, M., Küçükislamoglu, M., 2008. Preparation of Activated Carbon from Sugar Beet Molasses and Adsorption of Methylene Blue, Fresenius Environmental Bulletin, 17, 997-1001. (https://www.prt-parlar.de/download_list/?c=FEB_2008, FEB_08a_2008)
  • [11]. Teker, M., Imamoglu, M., Bocek, N., 2009. Adsorption of Some Textile Dyes on Activated Carbon Prepared from Rice Hulls, Fresenius Environmental Bulletin, 18, 709-714. (https://www.prt-parlar.de/download_list/?c=FEB_2009, FEB_05a_2009)
  • [12]. El-Hendawy, A.-N.A., 2009. An Insight into the KOH Activation Mechanism Through the Production of Microporous Activated Carbon for the Removal of Pb2+ Cations, Applied Surface Science, 255, 3723-3730.
  • [13]. Karagöz, S., Tay, T., Ucar, S., Erdem, M., 2008. Activated Carbons from Waste Biomass by Sulfuric Acid Activation and Their Use on Methylene Blue Adsorption, Bioresource Technology, 99, 6214-6222.
  • [14]. Wilson, K., Yang, H., Seo, C.W., Marshall, W.E., 2006. Select Metal Adsorption by Activated Carbon Made from Peanut Shells, Bioresource Technology, 97, 2266¬2270.
  • [15]. El-Sikaily, A., El Nemr, A., Khaled, A., Abdelwehab, O., 2007. Removal of Toxic Chromium from Wastewater Using Green Alga Ulva lactuca and Its Activated Carbon, Journal of Hazardous Materials, 148, 216-228.
  • [16]. Banat, F., Al-Asheh, S., Al-Makhadmeh, L., 2004. Utilization of Raw and Activated Date Pits for the Removal of Phenol from Aqueous Solutions, Chemical Engineering and Technology, 24, 80-86.
  • [17]. Önal, Y., Akmil-Başar, C., Eren, D., Sarıcı-Özdemir, Ç., Depci, T., 2006. Adsorption Kinetics of Malachite Green onto Activated Carbon Prepared from Tunçbilek Lignite, Journal of Hazardous Materials, 128, 150-157.
  • [18]. Soleimani, M., Kaghazchi, T., 2007, Agricultural Waste Conversion to Activated Carbon by Chemical Activation with Phosphoric Acid, Chemical Engineering & Technology, Volume 30, Issue5, May, 2007, Pages 649-654.
  • [19]. Pistachio production amounts of countries. https://atlasbig.com.tr/ulkelerin-antepfistigi-uretimi. (accessed at 20.04.2024)
  • [20]. Apaydın, A., Altuntaş, E., Şamil, A. 2023. Hidrotermal Ön İşlemli Okaliptüs Kök Odunlarından Piroliz Yöntemiyle Aktif Karbon Üretilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 653-662.
  • [21]. Guo, Q., Qiao, S., Zhang, D., Zhang, Z., Yu, F., Ma, Z., Hu, Y. 2023. A comparison of hydrothermal carbonization versus pyrolysis-activation for sludge-derived carbon materials on physiochemical properties and electrochemical performance. Biomass and Bioenergy 182 (2024) 107079.
  • [22]. Boyrazlı, M., Süner, M., Çelik, E. Dere, A., Canbay, C.A., Karip, E. 2023. Çay Tesisi Atıklarından Hidrotermal Yöntemle Aktif Karbon Üretimi. Fırat Üniv. Fen. Bil. Dergisi 35(2), 119-129, 2023
  • [23]. Şentorun-Shalaby, Ç., Uçak-Astarlıoglu, M. G., Artok, L., & Sarıcı, Ç. 2006. Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Microporous and mesoporous materials, 88(1-3), 126-134.
  • [24]. Yener, J., Kopac, T., Dogu, G., Doğu, T. 2008. Dynamic analysis of sorption of Methylene Blue dye on granular and powdered activated carbon. Chemical Engineering Journal 144 (2008) 400–406
  • [25]. Çakmak, L., 2019. Şeker Pancarı Melası ve Küspesinden Hidrotermal Yöntemle Manyetik Nanopartikül Destekli Karbon (MNPDK) Üretimi, Fırat Üniversitesi, Biyomühendislik Anabilim Dalı, Yüksek Lisans Tezi.
  • [26]. https://www.merckmillipore.com/TR/tr/product/Charcoal-activated,MDA_CHEM-102216?ReferrerURL=https%3A%2F%2Fwww.google.com.tr%2F (accessed at 28.08.2024)
  • [27]. https://apcpure.com/product/charcoal-activated-powder-dcl320/ (accessed at 28.08.2024)
  • [28]. https://www.sigmaaldrich.com/TR/en/product/sigald/242276 (accessed at 28.08.2024)
Year 2024, , 60 - 66, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1517079

Abstract

Project Number

MF.19.02.

References

  • [1]. Ntuli, V., Hapazari, I., 2013, Sustainable waste management by production of activated carbon from agroforestry residues. South African Journal of Science. 2013;109(1/2), Art. #1077, 6 pages. http://dx.doi.org/10.1590/sajs.2013/1077
  • [2]. Açıkyıldız, M., Gürses, A., Karaca, S., 2014, Preparation and characterization of activated carbon from plant wastes with chemical activation, Microporous and Mesoporous Materials ,198 (2014) 45–49
  • [3]. Hossain, M.Z., Wu, W., Xu, W.Z., Chowdhury, M.B.I., Jhawar, A.K., Machin, D., Charpentier, P.A., 2018, High Surface Area Mesoporous Activated Carbon from Hemp Bast Fibre Using Hydrothermal Processing, Journal of Carbon Research. doi:10.20944/preprints201804.0372.v1
  • [4]. Jain, A., Balasubramanian, R., Srinivasan, M.P., 2015, Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review, Chemical Engineering Journal 283 (2016) 789–805
  • [5]. Hayashi, J., Kazehaya, A., Muroyama, K., Watkinson, A. P., 2000. Preparation of Activated Carbon From Lignin By Chemical Activation, Carbon, 38, 1873-1878.
  • [6]. Hendawy, A.N., 2003. Influence of HNO3 Oxidation on the Structure and Adsorptive Properties of Corncob-Based Activated Carbon, Carbon, 41, 713-722
  • [7]. Pradhan, B.K., Sandle, N.K., 1999. Effect Of Different Oxidizing Agent Treatments On The Surface Properties Of Activated Carbons, Carbon, 37, 1323-1332
  • [8]. Hameed, B.H., Ahmad, A.L., Latiff, K.N.A., 2007. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust, Dyes and Pigments, 75, 143-149
  • [9]. Duman, G., Onal, Y., Okutucu, C., Onenc, S., Yanik, J., 2009. Production of Activated Carbon from Pine Cone and Evaluation of Its Physical, Chemical, and Adsorption Properties, Energy & Fuels, 23, 2197-2204.
  • [10]. Aci, F., Nebioglu, M., Arslan, M., Imamoglu, M., Zengin, M., Küçükislamoglu, M., 2008. Preparation of Activated Carbon from Sugar Beet Molasses and Adsorption of Methylene Blue, Fresenius Environmental Bulletin, 17, 997-1001. (https://www.prt-parlar.de/download_list/?c=FEB_2008, FEB_08a_2008)
  • [11]. Teker, M., Imamoglu, M., Bocek, N., 2009. Adsorption of Some Textile Dyes on Activated Carbon Prepared from Rice Hulls, Fresenius Environmental Bulletin, 18, 709-714. (https://www.prt-parlar.de/download_list/?c=FEB_2009, FEB_05a_2009)
  • [12]. El-Hendawy, A.-N.A., 2009. An Insight into the KOH Activation Mechanism Through the Production of Microporous Activated Carbon for the Removal of Pb2+ Cations, Applied Surface Science, 255, 3723-3730.
  • [13]. Karagöz, S., Tay, T., Ucar, S., Erdem, M., 2008. Activated Carbons from Waste Biomass by Sulfuric Acid Activation and Their Use on Methylene Blue Adsorption, Bioresource Technology, 99, 6214-6222.
  • [14]. Wilson, K., Yang, H., Seo, C.W., Marshall, W.E., 2006. Select Metal Adsorption by Activated Carbon Made from Peanut Shells, Bioresource Technology, 97, 2266¬2270.
  • [15]. El-Sikaily, A., El Nemr, A., Khaled, A., Abdelwehab, O., 2007. Removal of Toxic Chromium from Wastewater Using Green Alga Ulva lactuca and Its Activated Carbon, Journal of Hazardous Materials, 148, 216-228.
  • [16]. Banat, F., Al-Asheh, S., Al-Makhadmeh, L., 2004. Utilization of Raw and Activated Date Pits for the Removal of Phenol from Aqueous Solutions, Chemical Engineering and Technology, 24, 80-86.
  • [17]. Önal, Y., Akmil-Başar, C., Eren, D., Sarıcı-Özdemir, Ç., Depci, T., 2006. Adsorption Kinetics of Malachite Green onto Activated Carbon Prepared from Tunçbilek Lignite, Journal of Hazardous Materials, 128, 150-157.
  • [18]. Soleimani, M., Kaghazchi, T., 2007, Agricultural Waste Conversion to Activated Carbon by Chemical Activation with Phosphoric Acid, Chemical Engineering & Technology, Volume 30, Issue5, May, 2007, Pages 649-654.
  • [19]. Pistachio production amounts of countries. https://atlasbig.com.tr/ulkelerin-antepfistigi-uretimi. (accessed at 20.04.2024)
  • [20]. Apaydın, A., Altuntaş, E., Şamil, A. 2023. Hidrotermal Ön İşlemli Okaliptüs Kök Odunlarından Piroliz Yöntemiyle Aktif Karbon Üretilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 653-662.
  • [21]. Guo, Q., Qiao, S., Zhang, D., Zhang, Z., Yu, F., Ma, Z., Hu, Y. 2023. A comparison of hydrothermal carbonization versus pyrolysis-activation for sludge-derived carbon materials on physiochemical properties and electrochemical performance. Biomass and Bioenergy 182 (2024) 107079.
  • [22]. Boyrazlı, M., Süner, M., Çelik, E. Dere, A., Canbay, C.A., Karip, E. 2023. Çay Tesisi Atıklarından Hidrotermal Yöntemle Aktif Karbon Üretimi. Fırat Üniv. Fen. Bil. Dergisi 35(2), 119-129, 2023
  • [23]. Şentorun-Shalaby, Ç., Uçak-Astarlıoglu, M. G., Artok, L., & Sarıcı, Ç. 2006. Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Microporous and mesoporous materials, 88(1-3), 126-134.
  • [24]. Yener, J., Kopac, T., Dogu, G., Doğu, T. 2008. Dynamic analysis of sorption of Methylene Blue dye on granular and powdered activated carbon. Chemical Engineering Journal 144 (2008) 400–406
  • [25]. Çakmak, L., 2019. Şeker Pancarı Melası ve Küspesinden Hidrotermal Yöntemle Manyetik Nanopartikül Destekli Karbon (MNPDK) Üretimi, Fırat Üniversitesi, Biyomühendislik Anabilim Dalı, Yüksek Lisans Tezi.
  • [26]. https://www.merckmillipore.com/TR/tr/product/Charcoal-activated,MDA_CHEM-102216?ReferrerURL=https%3A%2F%2Fwww.google.com.tr%2F (accessed at 28.08.2024)
  • [27]. https://apcpure.com/product/charcoal-activated-powder-dcl320/ (accessed at 28.08.2024)
  • [28]. https://www.sigmaaldrich.com/TR/en/product/sigald/242276 (accessed at 28.08.2024)
There are 28 citations in total.

Details

Primary Language English
Subjects Powder Metallurgy, Manufacturing Metallurgy , Nanomaterials
Journal Section Articles
Authors

Mustafa Boyrazlı 0000-0002-2340-6703

Elif Arancı Öztürk 0000-0001-8362-7332

Emrah Çelik 0000-0001-7443-0351

Mehmet Ali Yasli 0009-0008-6585-7132

Project Number MF.19.02.
Publication Date December 29, 2024
Submission Date July 16, 2024
Acceptance Date October 12, 2024
Published in Issue Year 2024

Cite

APA Boyrazlı, M., Arancı Öztürk, E., Çelik, E., Yasli, M. A. (2024). Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(4), 60-66. https://doi.org/10.18466/cbayarfbe.1517079
AMA Boyrazlı M, Arancı Öztürk E, Çelik E, Yasli MA. Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal. CBUJOS. December 2024;20(4):60-66. doi:10.18466/cbayarfbe.1517079
Chicago Boyrazlı, Mustafa, Elif Arancı Öztürk, Emrah Çelik, and Mehmet Ali Yasli. “Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, no. 4 (December 2024): 60-66. https://doi.org/10.18466/cbayarfbe.1517079.
EndNote Boyrazlı M, Arancı Öztürk E, Çelik E, Yasli MA (December 1, 2024) Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 4 60–66.
IEEE M. Boyrazlı, E. Arancı Öztürk, E. Çelik, and M. A. Yasli, “Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal”, CBUJOS, vol. 20, no. 4, pp. 60–66, 2024, doi: 10.18466/cbayarfbe.1517079.
ISNAD Boyrazlı, Mustafa et al. “Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/4 (December 2024), 60-66. https://doi.org/10.18466/cbayarfbe.1517079.
JAMA Boyrazlı M, Arancı Öztürk E, Çelik E, Yasli MA. Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal. CBUJOS. 2024;20:60–66.
MLA Boyrazlı, Mustafa et al. “Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 20, no. 4, 2024, pp. 60-66, doi:10.18466/cbayarfbe.1517079.
Vancouver Boyrazlı M, Arancı Öztürk E, Çelik E, Yasli MA. Use of Active Carbon Produced by Hydrothermal Method from Agricultural Waste in Methylene Blue Removal. CBUJOS. 2024;20(4):60-6.