Research Article
BibTex RIS Cite

Year 2025, Volume: 21 Issue: 2, 118 - 124, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1582175
https://izlik.org/JA97XU49WL

Abstract

Project Number

16DPT002

References

  • [1]. Khatoon vd., “Perovskite solar cell’s efficiency, stability and scalability: A review”, Mater. Sci. Energy Technol., c. 6, ss. 437-459, 2023, doi: 10.1016/j.mset.2023.04.007.
  • [2]. N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology”, Mater. Today, c. 18, sy 2, ss. 65-72, Mar. 2015, doi: 10.1016/j.mattod.2014.07.007.
  • [3]. B. Turedi vd., “Single‐Crystal Perovskite Solar Cells Exhibit Close to Half A Millimeter Electron‐Diffusion Length”, Adv. Mater., c. 34, sy 47, s. 2202390, Kas. 2022, doi: 10.1002/adma.202202390.
  • [4].“best-research–cell-efficiencies chart, NREL”. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
  • [5]. H. Zhu vd., “Long-term operating stability in perovskite photovoltaics”, Nat. Rev. Mater., c. 8, sy 9, ss. 569-586, Eyl. 2023, doi: 10.1038/s41578-023-00582-w.
  • [6]. T. Ahmed Chowdhury, M. A. B. Zafar, M. S.-U. Islam, M. Shahinuzzaman, M. Aminul Islam, ve M. Uddin Khandaker, “Stability of perovskite solar cells: issues and prospects”, RSC Adv., c. 13, sy 3, ss. 1787-1810, 2023, doi: 10.1039/D2RA05903G.
  • [7]. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, ve Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells”, J. Mater. Chem. A, c. 2, sy 3, ss. 705-710, Ara. 2013, doi: 10.1039/C3TA13606J.
  • [8]. J. Bahadur, A. H. Ghahremani, S. Gupta, T. Druffel, M. K. Sunkara, ve K. Pal, “Enhanced moisture stability of MAPbI3 perovskite solar cells through Barium doping”, Sol. Energy, c. 190, ss. 396-404, Eyl. 2019, doi: 10.1016/j.solener.2019.08.033.
  • [9]. “Understanding the Cubic Phase Stabilization and Crystallization Kinetics in Mixed Cations and Halides Perovskite Single Crystals | Journal of the American Chemical Society”. J. Am. Chem. Soc. 2017, 139, 9, 3320–3323, https://pubs.acs.org/doi/10.1021/jacs.6b12432.
  • [10]. K. M. M. Salim vd., “Extended Absorption Window and Improved Stability of Cesium-Based Triple-Cation Perovskite Solar Cells Passivated with Perfluorinated Organics”, ACS Energy Lett., Nis. 2018, doi: 10.1021/acsenergylett.8b00328.
  • [11]. M. Saliba vd., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency”, Energy Environ. Sci., c. 9, sy 6, ss. 1989-1997, Haz. 2016, doi: 10.1039/C5EE03874J.
  • [12]. W. Tan, A. R. Bowring, A. C. Meng, M. D. McGehee, ve P. C. McIntyre, “Thermal Stability of Mixed Cation Metal Halide Perovskites in Air”, ACS Appl. Mater. Interfaces 2018, 10, 6, 5485–5491, https://pubs.acs.org/doi/full/10.1021/acsami.7b15263.
  • [13]. M. M. Tavakoli vd., “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures”, ACS Nano 2015, 9, 10, 10287–10295, https://pubs.acs.org/doi/full/10.1021/acsnano.5b04284.
  • [14]. Q. Chen vd., “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”, J. Am. Chem. Soc. 2014, 136, 2, 622–625, https://pubs.acs.org/doi/full/10.1021/ja411509g.
  • [15]. Y. Han vd., “Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity”, J. Mater. Chem. A, c. 3, sy 15, ss. 8139-8147, Mar. 2015, doi: 10.1039/C5TA00358J.
  • [16]. A. Mahapatra, D. Prochowicz, M. M. Tavakoli, S. Trivedi, P. Kumar, ve P. Yadav, “A review of aspects of additive engineering in perovskite solar cells”, J. Mater. Chem. A, c. 8, sy 1, ss. 27-54, Ara. 2019, doi: 10.1039/C9TA07657C.
  • [17]. L. Han vd., “Environmental‐Friendly Urea Additive Induced Large Perovskite Grains for High Performance Inverted Solar Cells”, doi: 10.1002/solr.201800054.
  • [18]. N. K. Noel vd., “Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites”, ACS Nano 2014, 8, 10, 9815–9821, https://pubs.acs.org/doi/full/10.1021/nn5036476.
  • [19]. D. Xin, S. Tie, R. Yuan, X. Zheng, J. Zhu, ve W.-H. Zhang, “Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules”, ACS Publ., Kas. 2019, doi: 10.1021/acsami.9b15166.
  • [20]. J. Zhang vd., “Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction”, J. Mater. Chem. A, c. 5, sy 8, ss. 4190-4198, Şub. 2017, doi: 10.1039/C6TA10526B.
  • [21]. K.-M. Lee vd., “Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells”, Sol. Energy Mater. Sol. Cells, c. 172, ss. 368-375, Ara. 2017, doi: 10.1016/j.solmat.2017.08.010.
  • [22]. D. Liu vd., “Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer”, Nano Energy, c. 31, ss. 462-468, Oca. 2017, doi: 10.1016/j.nanoen.2016.11.028.
  • [23]. “Double-Halide Composition-Engineered SnO2-Triple Cation Perovskite Solar Cells Demonstrating Outstanding Performance and Stability | ACS Applied Energy Materials”. ACS Appl. Energy Mater. 2020, 3, 9, 8595–8605, https://pubs.acs.org/doi/10.1021/acsaem.0c01214.
  • [24]. “Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells | Nature Energy”. Nature Energy volume 5, pages131–140 (2020), https://www.nature.com/articles/s41560-019-0538-4?utm_source=acs&getft_integrator=acs.
  • [25]. S.-G. Ko vd., “Effects of thiourea on the perovskite crystallization for fully printable solar cells”, Sol. Energy Mater. Sol. Cells, c. 196, ss. 105-110, Tem. 2019, doi: 10.1016/j.solmat.2019.03.045.
  • [26]. Y. Liu vd., “Bridging Effects of Sulfur Anions at Titanium Oxide and Perovskite Interfaces on Interfacial Defect Passivation and Performance Enhancement of Perovskite Solar Cells”, ACS Omega, Ara. 2021, doi: 10.1021/acsomega.1c04685.
  • [27]. T. Du vd., “Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination versus extraction”, J. Mater. Chem. C, c. 8, sy 36, ss. 12648-12655, Eyl. 2020, doi: 10.1039/D0TC03390A.
  • [28]. J. Jiang vd., “Carrier lifetime enhancement in halide perovskite via remote epitaxy”, Nat. Commun., c. 10, sy 1, s. 4145, Eyl. 2019, doi: 10.1038/s41467-019-12056-1.
  • [29]. J. Chang vd., “Crystallization and Orientation Modulation Enable Highly Efficient Doctor-Bladed Perovskite Solar Cells”, Nano-Micro Lett., c. 15, sy 1, s. 164, Haz. 2023, doi: 10.1007/s40820-023-01138-x.
  • [30]. “Reversible Photoinduced Phase Segregation and Origin of Long Carrier Lifetime in Mixed‐Halide Perovskite Films”. Volume30, Issue28, July 9, 2020, 2002622, https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202002622?src=getftr&utm_source=acs&getft_integrator=acs.
  • [31]. S. S. Mali, J. V. Patil, D. W. Park, Y. H. Jung, ve C. K. Hong, “Intrinsic and extrinsic stability of triple-cation perovskite solar cells through synergistic influence of organic additive”, Cell Rep. Phys. Sci., c. 3, sy 6, s. 100906, Haz. 2022, doi: 10.1016/j.xcrp.2022.100906.
  • [32]. S. Wang vd., “High‐Performance Perovskite Solar Cells with Large Grain‐Size obtained by using the Lewis Acid‐Base Adduct of Thiourea”, doi: 10.1002/solr.201800034.
  • [33]. D. W. deQuilettes vd., “Reduced recombination via tunable surface fields in perovskite thin films”, Nat. Energy, c. 9, sy 4, ss. 457-466, Nis. 2024, doi: 10.1038/s41560-024-01470-5.
  • [34]. L. Fan vd., “Reducing charge-recombination losses in photovoltaic cells by spontaneous reconstruction of n/p homojunction in a monolithic perovskite film using black phosphorus nanosheets”, Chem. Eng. J., c. 479, s. 147861, Oca. 2024, doi: 10.1016/j.cej.2023.147861.
  • [35]. D. Shi vd., “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, c. 347, sy 6221, ss. 519-522, Oca. 2015, doi: 10.1126/science.aaa2725.
  • [36]. “Crystal Orientation and Grain Size: Do They Determine Optoelectronic Properties of MAPbI3 Perovskite? | The Journal of Physical Chemistry Letters J. Phys. Chem. Lett. 2019, 10, 6010−6018, https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02757.
  • [37]. “A multiscale ion diffusion framework sheds light on the diffusion–stability–hysteresis nexus in metal halide perovskites | Nature Materials”. Nature Materials volume 22, pages, 329–337 (2023), https://www.nature.com/articles/s41563-023-01488-2.

Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency

Year 2025, Volume: 21 Issue: 2, 118 - 124, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1582175
https://izlik.org/JA97XU49WL

Abstract

This study investigates the effect of adding 2,2-dichloroacetamide (DCA) to the anti-solvent process in perovskite film fabrication. The results show that DCA additive increases the apparent grain size of the perovskite, reduces crystal defects, and improves the optoelectronic properties of perovskite solar cells (PSCs). Triple-cation perovskite thin films modified with DCA exhibit a 16% improvement in device performance compared to the unmodified control cell, due to increased emission intensity, longer charge carrier lifetimes, and passivation of surface defects, resulting in reduced hysteresis. The use of DCA reduces charge carrier recombination losses in PSCs, leading to enhancements in fill factor (FF), short-circuit current density (JSC), and power conversion efficiency (PCE), increasing the PCE of the control cell from 12.6% to 14.6%. This research highlights the potential of molecular additives to optimize crystallization kinetics, facilitating the development of more efficient PSCs. The findings reveal that DCA additive plays a significant role in enhancing perovskite film quality. This strategy has the potential to improve the structural integrity and optoelectronic properties of perovskite layers, thereby enhancing the performance of solar cells.

Supporting Institution

Presidency of the Republic of Turkey, Strategy and Budget Department

Project Number

16DPT002

Thanks

The authors gratefully acknowledge the financial support from the Presidency of the Republic of Turkey, Strategy and Budget Department (Project No: 16DPT002).

References

  • [1]. Khatoon vd., “Perovskite solar cell’s efficiency, stability and scalability: A review”, Mater. Sci. Energy Technol., c. 6, ss. 437-459, 2023, doi: 10.1016/j.mset.2023.04.007.
  • [2]. N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology”, Mater. Today, c. 18, sy 2, ss. 65-72, Mar. 2015, doi: 10.1016/j.mattod.2014.07.007.
  • [3]. B. Turedi vd., “Single‐Crystal Perovskite Solar Cells Exhibit Close to Half A Millimeter Electron‐Diffusion Length”, Adv. Mater., c. 34, sy 47, s. 2202390, Kas. 2022, doi: 10.1002/adma.202202390.
  • [4].“best-research–cell-efficiencies chart, NREL”. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
  • [5]. H. Zhu vd., “Long-term operating stability in perovskite photovoltaics”, Nat. Rev. Mater., c. 8, sy 9, ss. 569-586, Eyl. 2023, doi: 10.1038/s41578-023-00582-w.
  • [6]. T. Ahmed Chowdhury, M. A. B. Zafar, M. S.-U. Islam, M. Shahinuzzaman, M. Aminul Islam, ve M. Uddin Khandaker, “Stability of perovskite solar cells: issues and prospects”, RSC Adv., c. 13, sy 3, ss. 1787-1810, 2023, doi: 10.1039/D2RA05903G.
  • [7]. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, ve Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells”, J. Mater. Chem. A, c. 2, sy 3, ss. 705-710, Ara. 2013, doi: 10.1039/C3TA13606J.
  • [8]. J. Bahadur, A. H. Ghahremani, S. Gupta, T. Druffel, M. K. Sunkara, ve K. Pal, “Enhanced moisture stability of MAPbI3 perovskite solar cells through Barium doping”, Sol. Energy, c. 190, ss. 396-404, Eyl. 2019, doi: 10.1016/j.solener.2019.08.033.
  • [9]. “Understanding the Cubic Phase Stabilization and Crystallization Kinetics in Mixed Cations and Halides Perovskite Single Crystals | Journal of the American Chemical Society”. J. Am. Chem. Soc. 2017, 139, 9, 3320–3323, https://pubs.acs.org/doi/10.1021/jacs.6b12432.
  • [10]. K. M. M. Salim vd., “Extended Absorption Window and Improved Stability of Cesium-Based Triple-Cation Perovskite Solar Cells Passivated with Perfluorinated Organics”, ACS Energy Lett., Nis. 2018, doi: 10.1021/acsenergylett.8b00328.
  • [11]. M. Saliba vd., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency”, Energy Environ. Sci., c. 9, sy 6, ss. 1989-1997, Haz. 2016, doi: 10.1039/C5EE03874J.
  • [12]. W. Tan, A. R. Bowring, A. C. Meng, M. D. McGehee, ve P. C. McIntyre, “Thermal Stability of Mixed Cation Metal Halide Perovskites in Air”, ACS Appl. Mater. Interfaces 2018, 10, 6, 5485–5491, https://pubs.acs.org/doi/full/10.1021/acsami.7b15263.
  • [13]. M. M. Tavakoli vd., “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures”, ACS Nano 2015, 9, 10, 10287–10295, https://pubs.acs.org/doi/full/10.1021/acsnano.5b04284.
  • [14]. Q. Chen vd., “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”, J. Am. Chem. Soc. 2014, 136, 2, 622–625, https://pubs.acs.org/doi/full/10.1021/ja411509g.
  • [15]. Y. Han vd., “Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity”, J. Mater. Chem. A, c. 3, sy 15, ss. 8139-8147, Mar. 2015, doi: 10.1039/C5TA00358J.
  • [16]. A. Mahapatra, D. Prochowicz, M. M. Tavakoli, S. Trivedi, P. Kumar, ve P. Yadav, “A review of aspects of additive engineering in perovskite solar cells”, J. Mater. Chem. A, c. 8, sy 1, ss. 27-54, Ara. 2019, doi: 10.1039/C9TA07657C.
  • [17]. L. Han vd., “Environmental‐Friendly Urea Additive Induced Large Perovskite Grains for High Performance Inverted Solar Cells”, doi: 10.1002/solr.201800054.
  • [18]. N. K. Noel vd., “Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites”, ACS Nano 2014, 8, 10, 9815–9821, https://pubs.acs.org/doi/full/10.1021/nn5036476.
  • [19]. D. Xin, S. Tie, R. Yuan, X. Zheng, J. Zhu, ve W.-H. Zhang, “Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules”, ACS Publ., Kas. 2019, doi: 10.1021/acsami.9b15166.
  • [20]. J. Zhang vd., “Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction”, J. Mater. Chem. A, c. 5, sy 8, ss. 4190-4198, Şub. 2017, doi: 10.1039/C6TA10526B.
  • [21]. K.-M. Lee vd., “Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells”, Sol. Energy Mater. Sol. Cells, c. 172, ss. 368-375, Ara. 2017, doi: 10.1016/j.solmat.2017.08.010.
  • [22]. D. Liu vd., “Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer”, Nano Energy, c. 31, ss. 462-468, Oca. 2017, doi: 10.1016/j.nanoen.2016.11.028.
  • [23]. “Double-Halide Composition-Engineered SnO2-Triple Cation Perovskite Solar Cells Demonstrating Outstanding Performance and Stability | ACS Applied Energy Materials”. ACS Appl. Energy Mater. 2020, 3, 9, 8595–8605, https://pubs.acs.org/doi/10.1021/acsaem.0c01214.
  • [24]. “Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells | Nature Energy”. Nature Energy volume 5, pages131–140 (2020), https://www.nature.com/articles/s41560-019-0538-4?utm_source=acs&getft_integrator=acs.
  • [25]. S.-G. Ko vd., “Effects of thiourea on the perovskite crystallization for fully printable solar cells”, Sol. Energy Mater. Sol. Cells, c. 196, ss. 105-110, Tem. 2019, doi: 10.1016/j.solmat.2019.03.045.
  • [26]. Y. Liu vd., “Bridging Effects of Sulfur Anions at Titanium Oxide and Perovskite Interfaces on Interfacial Defect Passivation and Performance Enhancement of Perovskite Solar Cells”, ACS Omega, Ara. 2021, doi: 10.1021/acsomega.1c04685.
  • [27]. T. Du vd., “Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination versus extraction”, J. Mater. Chem. C, c. 8, sy 36, ss. 12648-12655, Eyl. 2020, doi: 10.1039/D0TC03390A.
  • [28]. J. Jiang vd., “Carrier lifetime enhancement in halide perovskite via remote epitaxy”, Nat. Commun., c. 10, sy 1, s. 4145, Eyl. 2019, doi: 10.1038/s41467-019-12056-1.
  • [29]. J. Chang vd., “Crystallization and Orientation Modulation Enable Highly Efficient Doctor-Bladed Perovskite Solar Cells”, Nano-Micro Lett., c. 15, sy 1, s. 164, Haz. 2023, doi: 10.1007/s40820-023-01138-x.
  • [30]. “Reversible Photoinduced Phase Segregation and Origin of Long Carrier Lifetime in Mixed‐Halide Perovskite Films”. Volume30, Issue28, July 9, 2020, 2002622, https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202002622?src=getftr&utm_source=acs&getft_integrator=acs.
  • [31]. S. S. Mali, J. V. Patil, D. W. Park, Y. H. Jung, ve C. K. Hong, “Intrinsic and extrinsic stability of triple-cation perovskite solar cells through synergistic influence of organic additive”, Cell Rep. Phys. Sci., c. 3, sy 6, s. 100906, Haz. 2022, doi: 10.1016/j.xcrp.2022.100906.
  • [32]. S. Wang vd., “High‐Performance Perovskite Solar Cells with Large Grain‐Size obtained by using the Lewis Acid‐Base Adduct of Thiourea”, doi: 10.1002/solr.201800034.
  • [33]. D. W. deQuilettes vd., “Reduced recombination via tunable surface fields in perovskite thin films”, Nat. Energy, c. 9, sy 4, ss. 457-466, Nis. 2024, doi: 10.1038/s41560-024-01470-5.
  • [34]. L. Fan vd., “Reducing charge-recombination losses in photovoltaic cells by spontaneous reconstruction of n/p homojunction in a monolithic perovskite film using black phosphorus nanosheets”, Chem. Eng. J., c. 479, s. 147861, Oca. 2024, doi: 10.1016/j.cej.2023.147861.
  • [35]. D. Shi vd., “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, c. 347, sy 6221, ss. 519-522, Oca. 2015, doi: 10.1126/science.aaa2725.
  • [36]. “Crystal Orientation and Grain Size: Do They Determine Optoelectronic Properties of MAPbI3 Perovskite? | The Journal of Physical Chemistry Letters J. Phys. Chem. Lett. 2019, 10, 6010−6018, https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02757.
  • [37]. “A multiscale ion diffusion framework sheds light on the diffusion–stability–hysteresis nexus in metal halide perovskites | Nature Materials”. Nature Materials volume 22, pages, 329–337 (2023), https://www.nature.com/articles/s41563-023-01488-2.
There are 37 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other), Compound Semiconductors, Nanomaterials
Journal Section Research Article
Authors

Adem Mutlu 0000-0002-1696-4379

Sevdiye Başak Turgut This is me 0000-0003-0652-5839

Project Number 16DPT002
Submission Date November 9, 2024
Acceptance Date December 16, 2024
Publication Date June 27, 2025
DOI https://doi.org/10.18466/cbayarfbe.1582175
IZ https://izlik.org/JA97XU49WL
Published in Issue Year 2025 Volume: 21 Issue: 2

Cite

APA Mutlu, A., & Turgut, S. B. (2025). Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency. Celal Bayar University Journal of Science, 21(2), 118-124. https://doi.org/10.18466/cbayarfbe.1582175
AMA 1.Mutlu A, Turgut SB. Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency. CBUJOS. 2025;21(2):118-124. doi:10.18466/cbayarfbe.1582175
Chicago Mutlu, Adem, and Sevdiye Başak Turgut. 2025. “Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency”. Celal Bayar University Journal of Science 21 (2): 118-24. https://doi.org/10.18466/cbayarfbe.1582175.
EndNote Mutlu A, Turgut SB (June 1, 2025) Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency. Celal Bayar University Journal of Science 21 2 118–124.
IEEE [1]A. Mutlu and S. B. Turgut, “Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency”, CBUJOS, vol. 21, no. 2, pp. 118–124, June 2025, doi: 10.18466/cbayarfbe.1582175.
ISNAD Mutlu, Adem - Turgut, Sevdiye Başak. “Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency”. Celal Bayar University Journal of Science 21/2 (June 1, 2025): 118-124. https://doi.org/10.18466/cbayarfbe.1582175.
JAMA 1.Mutlu A, Turgut SB. Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency. CBUJOS. 2025;21:118–124.
MLA Mutlu, Adem, and Sevdiye Başak Turgut. “Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency”. Celal Bayar University Journal of Science, vol. 21, no. 2, June 2025, pp. 118-24, doi:10.18466/cbayarfbe.1582175.
Vancouver 1.Mutlu A, Turgut SB. Effects of 2,2-Dichloroacetamide Additive on Perovskite Solar Cells Efficiency. CBUJOS [Internet]. 2025 June 1;21(2):118-24. Available from: https://izlik.org/JA97XU49WL