Research Article
BibTex RIS Cite

Alfa Parçacık Dedektörleri için YAG:Ce Kompozit Sintilatörlerde Kalınlık ve Bileşimin Etkisi

Year 2025, Volume: 21 Issue: 3, 72 - 79, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1599240

Abstract

Bu çalışma, karışık radyasyon alanlarında YAG:Ce kompozit sintilatörler kullanan görüntüleme tabanlı alfa parçacık dedektörlerinin performansını değerlendirmektedir. Farklı kalınlıklara (0,1 mm, 0,5 mm ve 1,0 mm) ve YAG:Ce ile epoksi oranlarına (5%, 15% ve 20%) sahip sintilatörler, algılama verimliliği, ışık çıktısı ve enerji çözünürlüğünü analiz etmek amacıyla GEANT4 simülasyon paketi kullanılarak modellenmiştir. Sonuçlar, 0,5 mm kalınlığında ve %90 YAG:Ce ile %10 epoksi içeren sintilatörün, simüle edilen sintilatörler arasında bir alfa parçacık dedektörü için en uygun yapılandırma olduğunu göstermektedir. Ayrıca, fantom tabanlı simülasyonlar, dedektörün alfa parçacıklarını net bir şekilde görüntüleyebildiğini ortaya koymuştur.

References

  • [1]. Gam, DY, Lee, CY, Park, JY, Kim, H, Lim, JM. 2023. Study on the characteristics of airborne gross alpha and gross beta activities in the vicinity of nuclear facilities. Nuclear Engineering and Technology; 55(12): 4554–4560.
  • [2]. Feldman, WC, et al. 2004. Gamma‐Ray, Neutron, and Alpha‐Particle Spectrometers for the Lunar Prospector mission. Journal of Geophysical Research Atmospheres; 109(E7).
  • [3]. National Academies Press (US). 1999. Natural Radioactivity and Radiation. Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials. https://www.ncbi.nlm.nih.gov/books/NBK230654/ (accessed at 01.12.2024).
  • [4]. Lassmann, M, Eberlein, U. 2018. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Annals of the ICRP; 47(3–4): 187–195.
  • [5]. Darwish, RA, Staudacher, AH, Bezak, E, Brown, MP. 2015. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector. Computational and Mathematical Methods in Medicine; 2015: 1–7.
  • [6]. Morishita, Y, et al. 2021. Plutonium dioxide particle imaging using a high-resolution alpha imager for radiation protection. Scientific Reports; 11(1).
  • [7]. Morishita, Y, Hoshi, K, Torii, T. 2020. Evaluation of an ultra-thin plastic scintillator to detect alpha and beta particle contamination. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 966: 163795.
  • [8]. Yamamoto, S, Tomita, H. 2018. Development of a high-resolution alpha-particle imaging system for detection of plutonium particles from the Fukushima Daiichi nuclear power plant. Radiation Measurements; 115: 13–19.
  • [9]. McElhaney, SA, Ramsey, JA, Bauer, ML, Chiles, MM. 1990. A ruggedized ZnS(Ag)/epoxy alpha scintillation detector. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 299(1–3): 111–114.
  • [10]. Kim, H, Park, K, Han, B, Choi, KD, Cho, G, Chang, H. 2020. Study on ZnS(Ag) for alpha spectrometer using silicon-based photo sensor. Journal of Instrumentation; 15(10): P10020.
  • [11]. Tu, D., et al. 2024. Glass‐ZnS: Ag scintillating composite for radiation detection. Journal of the American Ceramic Society, 107(8), 5265-5273.
  • [12]. Marin, V. N., Trunov, D. N., Litvin, V. S., Sadykov, R. A., & Altynbaev, E. V. 2024. Read-Out System for Thermal Neutron Detectors Based on ZnS (Ag)/LiF Scintillator. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 18(4), 894-899.
  • [13]. Zada, I. C., Osovizky, A., & Orion, I. 2024. Enhanced high-sensitivity multi-layer neutron detector based on LiF: ZnS (Ag) scintillator. Scientific Reports, 14(1), 31446.
  • [14]. Kubota, N, Katagiri, M, Kamijo, K, Nanto, H. 2004. Evaluation of ZnS-family phosphors for neutron detectors using photon counting method. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 529(1–3): 321–324.
  • [15]. Morishita, Y, et al. 2014. Performance comparison of scintillators for alpha particle detectors. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 764: 383–386.
  • [16]. Iida, T, et al. 1983. An alpha-particle imaging system for detecting plutonium contamination. Nuclear Instruments and Methods in Physics Research; 212(1–3): 413–418.
  • [17]. Morishita, Y, Torii, T, Usami, H, Kikuchi, H, Utsugi, W, Takahira, S. 2019. Detection of alpha particle emitters originating from nuclear fuel inside reactor building of Fukushima Daiichi Nuclear Power Plant. Scientific Reports; 9(1).
  • [18]. Yamamoto, S, Kataoka, J. 2024. Development of an ultrahigh resolution 1 mm Si-PM array based GGAG alpha particle imaging detector with gamma or X-ray separation capability. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 1066: 169623.
  • [19]. Unzueta, MA, Mixter, W, Croft, Z, Joseph, J, Ludewigt, B, Persaud, A. 2019. Position sensitive alpha detector for an associated particle imaging system. AIP Conference Proceedings.
  • [20]. Yasuda, K, Usuda, S, Gunji, H. 2000. Properties of a YAP powder scintillator as alpha-ray detector. Applied Radiation and Isotopes; 52(3): 365–368.
  • [21]. Shimaoka, T, Kaneko, JH, Izaki, K, Tsubota, Y, Higuchi, M, Nishiyama, S. 2013. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 735: 110–114.
  • [22]. Korotcenkov, G, Ivanov, M. 2023. ZnS-Based Neutron and Alpha Radiation Detectors. Springer eBooks; 75–108.
  • [23]. Moszyński, M, Ludziejewski, T, Wolski, D, Klamra, W, Norlin, LO. 1994. Properties of the YAG:Ce scintillator. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 345(3): 461–467.
  • [24]. Yanagida, T, et al. 2005. Evaluation of properties of YAG (Ce) ceramic scintillators. IEEE Transactions on Nuclear Science; 52(5): 1836–1841.
  • [25]. Ludziejewski, T, Moszyński, M, Kapusta, M, Wolski, D, Klamra, W, Moszyńska, K. 1997. Investigation of some scintillation properties of YAG:Ce crystals. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 398(2–3): 287–294.
  • [26]. Mihóková, E, Nikl, M, Mareš, JA, Beitlerova, A, Vedda, A, Nejezchleb, K, D’Ambrosio, C. 2007. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics. Journal of Luminescence; 126(1): 77–80.
  • [27]. Agostinelli, S, et al. 2003. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 506(3): 250–303.
  • [28]. Asaro, F, Perlman, I. 1954. The Alpha- and Gamma-Ray Spectra of Pu238. Physical Review; 94(2): 381–385.
  • [29]. Asaro, F, Perlman, I. 1952. The Alpha-Spectra of Pu239 and Pu240. Physical Review; 88(4): 828–831.
  • [30]. Hamamatsu Photonics. MPPC array S13361-3050AE-04. https://www.hamamatsu.com/us/en/product/optical-sensors/mppc/mppc_mppc-array/S13361-3050AE-04.html (accessed at 30.11.2024).
  • [31]. Moszyński, M. 2003. Inorganic scintillation detectors in γ-ray spectrometry. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 505(1–2): 101–110.
  • [32]. Moszyński, M, et al. 2015. Energy resolution of scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 805: 25–35.
  • [33]. Llosa, G, et al. 2009. Energy, Timing and Position Resolution Studies With 16-Pixel Silicon Photomultiplier Matrices for Small Animal PET. IEEE Transactions on Nuclear Science; 56(5): 2586–2593.

Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors

Year 2025, Volume: 21 Issue: 3, 72 - 79, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1599240

Abstract

This study evaluates the performance of imaging-based alpha particle detectors using YAG:Ce composite scintillators in mixed radiation fields. Scintillators with varying thicknesses (0.1 mm, 0.5 mm, and 1.0 mm) and YAG:Ce to epoxy ratios (5%, 15%, and 20%) were modeled using the GEANT4 simulation package to analyze the detection efficiency, light output, and energy resolution of the alpha particle detectors. The results indicate that a 0.5 mm thick scintillator with 90% YAG:Ce and 10% epoxy is the optimal configuration among the simulated scintillators for an alpha particle detector. Additionally, phantom-based simulations demonstrated that the detector is capable of producing clear imaging of alpha particles.

Ethical Statement

There are no ethical issues after the publication of this manuscript.

References

  • [1]. Gam, DY, Lee, CY, Park, JY, Kim, H, Lim, JM. 2023. Study on the characteristics of airborne gross alpha and gross beta activities in the vicinity of nuclear facilities. Nuclear Engineering and Technology; 55(12): 4554–4560.
  • [2]. Feldman, WC, et al. 2004. Gamma‐Ray, Neutron, and Alpha‐Particle Spectrometers for the Lunar Prospector mission. Journal of Geophysical Research Atmospheres; 109(E7).
  • [3]. National Academies Press (US). 1999. Natural Radioactivity and Radiation. Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials. https://www.ncbi.nlm.nih.gov/books/NBK230654/ (accessed at 01.12.2024).
  • [4]. Lassmann, M, Eberlein, U. 2018. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Annals of the ICRP; 47(3–4): 187–195.
  • [5]. Darwish, RA, Staudacher, AH, Bezak, E, Brown, MP. 2015. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector. Computational and Mathematical Methods in Medicine; 2015: 1–7.
  • [6]. Morishita, Y, et al. 2021. Plutonium dioxide particle imaging using a high-resolution alpha imager for radiation protection. Scientific Reports; 11(1).
  • [7]. Morishita, Y, Hoshi, K, Torii, T. 2020. Evaluation of an ultra-thin plastic scintillator to detect alpha and beta particle contamination. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 966: 163795.
  • [8]. Yamamoto, S, Tomita, H. 2018. Development of a high-resolution alpha-particle imaging system for detection of plutonium particles from the Fukushima Daiichi nuclear power plant. Radiation Measurements; 115: 13–19.
  • [9]. McElhaney, SA, Ramsey, JA, Bauer, ML, Chiles, MM. 1990. A ruggedized ZnS(Ag)/epoxy alpha scintillation detector. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 299(1–3): 111–114.
  • [10]. Kim, H, Park, K, Han, B, Choi, KD, Cho, G, Chang, H. 2020. Study on ZnS(Ag) for alpha spectrometer using silicon-based photo sensor. Journal of Instrumentation; 15(10): P10020.
  • [11]. Tu, D., et al. 2024. Glass‐ZnS: Ag scintillating composite for radiation detection. Journal of the American Ceramic Society, 107(8), 5265-5273.
  • [12]. Marin, V. N., Trunov, D. N., Litvin, V. S., Sadykov, R. A., & Altynbaev, E. V. 2024. Read-Out System for Thermal Neutron Detectors Based on ZnS (Ag)/LiF Scintillator. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 18(4), 894-899.
  • [13]. Zada, I. C., Osovizky, A., & Orion, I. 2024. Enhanced high-sensitivity multi-layer neutron detector based on LiF: ZnS (Ag) scintillator. Scientific Reports, 14(1), 31446.
  • [14]. Kubota, N, Katagiri, M, Kamijo, K, Nanto, H. 2004. Evaluation of ZnS-family phosphors for neutron detectors using photon counting method. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 529(1–3): 321–324.
  • [15]. Morishita, Y, et al. 2014. Performance comparison of scintillators for alpha particle detectors. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 764: 383–386.
  • [16]. Iida, T, et al. 1983. An alpha-particle imaging system for detecting plutonium contamination. Nuclear Instruments and Methods in Physics Research; 212(1–3): 413–418.
  • [17]. Morishita, Y, Torii, T, Usami, H, Kikuchi, H, Utsugi, W, Takahira, S. 2019. Detection of alpha particle emitters originating from nuclear fuel inside reactor building of Fukushima Daiichi Nuclear Power Plant. Scientific Reports; 9(1).
  • [18]. Yamamoto, S, Kataoka, J. 2024. Development of an ultrahigh resolution 1 mm Si-PM array based GGAG alpha particle imaging detector with gamma or X-ray separation capability. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 1066: 169623.
  • [19]. Unzueta, MA, Mixter, W, Croft, Z, Joseph, J, Ludewigt, B, Persaud, A. 2019. Position sensitive alpha detector for an associated particle imaging system. AIP Conference Proceedings.
  • [20]. Yasuda, K, Usuda, S, Gunji, H. 2000. Properties of a YAP powder scintillator as alpha-ray detector. Applied Radiation and Isotopes; 52(3): 365–368.
  • [21]. Shimaoka, T, Kaneko, JH, Izaki, K, Tsubota, Y, Higuchi, M, Nishiyama, S. 2013. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 735: 110–114.
  • [22]. Korotcenkov, G, Ivanov, M. 2023. ZnS-Based Neutron and Alpha Radiation Detectors. Springer eBooks; 75–108.
  • [23]. Moszyński, M, Ludziejewski, T, Wolski, D, Klamra, W, Norlin, LO. 1994. Properties of the YAG:Ce scintillator. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 345(3): 461–467.
  • [24]. Yanagida, T, et al. 2005. Evaluation of properties of YAG (Ce) ceramic scintillators. IEEE Transactions on Nuclear Science; 52(5): 1836–1841.
  • [25]. Ludziejewski, T, Moszyński, M, Kapusta, M, Wolski, D, Klamra, W, Moszyńska, K. 1997. Investigation of some scintillation properties of YAG:Ce crystals. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 398(2–3): 287–294.
  • [26]. Mihóková, E, Nikl, M, Mareš, JA, Beitlerova, A, Vedda, A, Nejezchleb, K, D’Ambrosio, C. 2007. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics. Journal of Luminescence; 126(1): 77–80.
  • [27]. Agostinelli, S, et al. 2003. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 506(3): 250–303.
  • [28]. Asaro, F, Perlman, I. 1954. The Alpha- and Gamma-Ray Spectra of Pu238. Physical Review; 94(2): 381–385.
  • [29]. Asaro, F, Perlman, I. 1952. The Alpha-Spectra of Pu239 and Pu240. Physical Review; 88(4): 828–831.
  • [30]. Hamamatsu Photonics. MPPC array S13361-3050AE-04. https://www.hamamatsu.com/us/en/product/optical-sensors/mppc/mppc_mppc-array/S13361-3050AE-04.html (accessed at 30.11.2024).
  • [31]. Moszyński, M. 2003. Inorganic scintillation detectors in γ-ray spectrometry. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 505(1–2): 101–110.
  • [32]. Moszyński, M, et al. 2015. Energy resolution of scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment; 805: 25–35.
  • [33]. Llosa, G, et al. 2009. Energy, Timing and Position Resolution Studies With 16-Pixel Silicon Photomultiplier Matrices for Small Animal PET. IEEE Transactions on Nuclear Science; 56(5): 2586–2593.
There are 33 citations in total.

Details

Primary Language English
Subjects General Physics, Dedector Technology, Nuclear Applications
Journal Section Articles
Authors

Onur Buğra Kolcu 0000-0002-9177-1286

Publication Date September 26, 2025
Submission Date December 10, 2024
Acceptance Date April 7, 2025
Published in Issue Year 2025 Volume: 21 Issue: 3

Cite

APA Kolcu, O. B. (2025). Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors. Celal Bayar University Journal of Science, 21(3), 72-79. https://doi.org/10.18466/cbayarfbe.1599240
AMA Kolcu OB. Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors. CBUJOS. September 2025;21(3):72-79. doi:10.18466/cbayarfbe.1599240
Chicago Kolcu, Onur Buğra. “Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors”. Celal Bayar University Journal of Science 21, no. 3 (September 2025): 72-79. https://doi.org/10.18466/cbayarfbe.1599240.
EndNote Kolcu OB (September 1, 2025) Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors. Celal Bayar University Journal of Science 21 3 72–79.
IEEE O. B. Kolcu, “Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors”, CBUJOS, vol. 21, no. 3, pp. 72–79, 2025, doi: 10.18466/cbayarfbe.1599240.
ISNAD Kolcu, Onur Buğra. “Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors”. Celal Bayar University Journal of Science 21/3 (September2025), 72-79. https://doi.org/10.18466/cbayarfbe.1599240.
JAMA Kolcu OB. Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors. CBUJOS. 2025;21:72–79.
MLA Kolcu, Onur Buğra. “Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors”. Celal Bayar University Journal of Science, vol. 21, no. 3, 2025, pp. 72-79, doi:10.18466/cbayarfbe.1599240.
Vancouver Kolcu OB. Impact of Thickness and Composition on YAG:Ce Composite Scintillators for Alpha Particle Detectors. CBUJOS. 2025;21(3):72-9.