Research Article
BibTex RIS Cite

Year 2025, Volume: 21 Issue: 4, 111 - 117, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1665318

Abstract

References

  • [1]. Kajal, A, Bala, S, Kamboj, S, Sharma, N, Saini, V. 2013. Schiff Bases: A Versatile Pharmacophore. Journal of Catalysts; 2013: 1-14.
  • [2]. Jia, Y, Li, J. 2015. Molecular Assembly of Schiff Base Interactions: Construction and Application. Chem. Rev.; 115: 1597-1621.
  • [3]. Juyal, VK, Pathak, A, Panwar, M, Thakuri, SC, Prakash, O, Agrwal, A, Nand, V. 2023. Schiff base metal complexes as a versatile catalyst: A review. Journal of Organometallic Chemistry; 999: 122825.
  • [4]. Fatima, Z, Basha, HA, Khan, SA. 2023. A review: An overview on third-order nonlinear optical and optical limiting properties of Schiff bases. Journal of Molecular Structure; 1292: 136062.
  • [5]. Gopalakrishnan, AK, Angamaly, SA, Velayudhan, MP. 2021. An Insight into the Biological Properties of Imidazole-Based Schiff Bases: A Review. ChemistrySelect; 6: 10918-10947.
  • [6]. Subasi, NT. Overview of Schiff Bases. In Schiff Base in Organic, Inorganic and Physical Chemistry; IntechOpen: London, UK, 2023.
  • [7]. Uddin, MN. 2020. REVIEW: Biomedical applications of Schiff base metal complexes. J. Coord. Chem.; 74: 3109-3149.
  • [8]. Boulechfar, C, Ferkous, H, Delimi, A, Djedouani, A, Kahlouche, A, Boublia, A, Darwish, AS, Lemaoui, T, Verma, R, Benguerba, Y. 2023. Schiff bases and their metal Complexes: A review on the history, synthesis, and applications. Inorganic Chemistry Communications; 150: 110451.
  • [9]. Da Silva, CM, da Silva, DL, Modolo, LV, Alves, RB, de Resende, MA, Martins, CVB, de Fatima, A. 2011. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res.; 2: 1-8.
  • [10]. Matela, G. 2020. Schiff Bases and Complexes: A Review on Anti-Cancer Activity. Anti Cancer Agents Med. Chem.; 20: 1908-1917.
  • [11]. El-Sonbati, AZ, Mahmoud, WH, Mohammed, GG, Diab, MA, Morgan, ShM, Abbas, SY. 2019. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Applied Organometallic Chemistry; 33: e5048.
  • [12]. Segura, JL, Mancheno, MJ, Zamora, F. 2016. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev.; 45: 5635-5671.
  • [13]. Alyar, S, Alyar, H, Özmen, ÜÖ, Aktaş, O, Erdem, K. 2023. Biochemical properties of Schiff bases derived from FDA-approved sulfa drugs: Synthesis, ADME/molecular docking studies, and anticancer activity. Journal of Molecular Structure; 1293: 136167.
  • [14]. Andruh, M. 2015. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans.; 44: 16633-16653.
  • [15]. Mijatović, A, Gligorijević, N, Ćoćić, D, Spasić, S, Lolić, A, Aranđelović, S, Nikolić, M, Baošić, R, 2023. In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge. Journal of Inorganic Biochemistry; 244: 112224.
  • [16]. Benneth, MA, Smith, AK. 1974. Arene ruthenium (II) complexes formed by dehydrogenation of cyclohexadienes with ruthenium (III) trichloride. J. Chem. Soc. Dalton Trans.; 2: 233-241.
  • [17]. Güngör, SA, 2023. Synthesis, DNA Binding Properties, Molecular Docking and ADME Studies of Schiff Base Compound Containing Pyridine-Propargyl Group. Chemistry & Biodiversity; 20: e202300752.
  • [18]. Wajid, M, Uzair, M, Muhammad, G, Siddique, F, Bashir, M, Nadeem, S, Ashraf, A, Assad, N, Mushtaq, A, Rafay, MZ, Aqdas, A, Ahmad, S, Alasmari, AF. 2024. Sulfamethoxazole-derived Schiff bases: Synthesis, characterization, biological activities, molecular docking, DFT, and ADME studies. Journal of Molecular Structure; 1312: 138640.
  • [19]. Kökbudak, Z, Türkmenoğlu, B, Akkoç, S. 2022. A New Schiff Base Molecule Prepared from Pyrimidine-2-thione: Synthesis, Spectral Characterization, Cytotoxic Activity, DFT, and Molecular Docking Studies. Adıyaman University Journal of Science; 12(1): 9-25.
  • [20]. Micheal, S, Jeyeraman, P, Marimuthu, B, Rajasekar, R, Thanasamy, R, Kumar, KA, Raman, N. 2023. Influence of electron density on the biological activity of aniline substituted Schiff base: in silico, in vivo and in vitro authentication. Journal of Molecular Structure; 1279: 134987.
  • [21]. Daina, A, Michielin, O, Zoete V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep.; 7: 42717.
  • [22]. Daina, A, Zoete V. 2016. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11, 1117-1121.
  • [23]. He, X-X, Li, Y, Ma, B-B, Ke, Z, Liu, F-S. 2016. Sterically encumbered tetraarylimidazolium carbene Pd-PEPPSI complexes: highly efficient direct arylation of imidazoles with aryl bromides under aerobic conditions. Organometallics; 35: 2655-2663.
  • [24]. Winkler, A, Brandhorst, K, Freytag, M, Jones, PG, Tamm, M. 2016. Palladium (II) complexes with anionic N-heterocyclic carbene–borate ligands as catalysts for the amination of aryl halides. Organometallics; 35: 1160-1169.
  • [25]. Tu, T, Sun, Z, Fang, W, Xu, M, Zhou, Y. 2012. Robust acenaphthoimidazolylidene palladium complexes: highly efficient catalysts for suzuki–miyaura couplings with sterically hindered substrates. Organic letters; 14: 4250-4253.
  • [26]. Altenhoff, G, Goddard, R, Lehmann, CW, Glorius, F. 2004. Sterically demanding, bioxazoline-derived N-heterocyclic carbene ligands with restricted flexibility for catalysis. American Chemical Society; 126: 15195-15201.
  • [27]. Valente, C, Pompeo, M, Sayah, M, Organ, MG. 2014. Carbon–heteroatom coupling using Pd-PEPPSI complexes. Organic Process Research & Development; 18: 180-190.
  • [28]. Organ, MG, Çalimsiz, S, Sayah, M, Hoi, KH, Lough, AJ. 2009. Pd-PEPPSI-IPent: An Active, Sterically Demanding Cross-Coupling Catalyst and Its Application in the Synthesis of Tetra-Ortho-Substituted Biaryls. Angewandte Chemie International Edition; 48: 2383-2387.
  • [29]. Daina, A, Michielin, O, Zoete, V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports; 7:42717.

Computational ADME Analysis of a Schiff Base and its Ruthenium Complex: Implications for Medicinal Chemistry

Year 2025, Volume: 21 Issue: 4, 111 - 117, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1665318

Abstract

This study reports the synthesis and characterization of a novel vanillin-derived Schiff base and its Ruthenium(II) p-cymene complex, followed by an in silico investigation of their ADME (absorption, distribution, metabolism, excretion) properties. The Schiff base exhibited promising predicted gastrointestinal absorption and was not a P-glycoprotein substrate but showed limited blood-brain barrier penetration. In contrast, Ruthenium complex, while retaining high predicted gastrointestinal absorption, was predicted to be a P-glycoprotein substrate and also showed limited blood-brain barrier penetration. The complex further exhibited poor water solubility and potential CYP3A4 inhibition. While the Schiff base displayed a more favorable ADME profile, the Ruthenium complex, despite its challenges, warrants further exploration for potential anticancer applications due to the known cytotoxic potential of Ruthenium compounds. This study highlights the impact of Ruthenium complexation on the ADME characteristics of the Schiff base and emphasizes the need for further experimental validation.

Ethical Statement

There are no ethical issues regarding the publication of this study.

References

  • [1]. Kajal, A, Bala, S, Kamboj, S, Sharma, N, Saini, V. 2013. Schiff Bases: A Versatile Pharmacophore. Journal of Catalysts; 2013: 1-14.
  • [2]. Jia, Y, Li, J. 2015. Molecular Assembly of Schiff Base Interactions: Construction and Application. Chem. Rev.; 115: 1597-1621.
  • [3]. Juyal, VK, Pathak, A, Panwar, M, Thakuri, SC, Prakash, O, Agrwal, A, Nand, V. 2023. Schiff base metal complexes as a versatile catalyst: A review. Journal of Organometallic Chemistry; 999: 122825.
  • [4]. Fatima, Z, Basha, HA, Khan, SA. 2023. A review: An overview on third-order nonlinear optical and optical limiting properties of Schiff bases. Journal of Molecular Structure; 1292: 136062.
  • [5]. Gopalakrishnan, AK, Angamaly, SA, Velayudhan, MP. 2021. An Insight into the Biological Properties of Imidazole-Based Schiff Bases: A Review. ChemistrySelect; 6: 10918-10947.
  • [6]. Subasi, NT. Overview of Schiff Bases. In Schiff Base in Organic, Inorganic and Physical Chemistry; IntechOpen: London, UK, 2023.
  • [7]. Uddin, MN. 2020. REVIEW: Biomedical applications of Schiff base metal complexes. J. Coord. Chem.; 74: 3109-3149.
  • [8]. Boulechfar, C, Ferkous, H, Delimi, A, Djedouani, A, Kahlouche, A, Boublia, A, Darwish, AS, Lemaoui, T, Verma, R, Benguerba, Y. 2023. Schiff bases and their metal Complexes: A review on the history, synthesis, and applications. Inorganic Chemistry Communications; 150: 110451.
  • [9]. Da Silva, CM, da Silva, DL, Modolo, LV, Alves, RB, de Resende, MA, Martins, CVB, de Fatima, A. 2011. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res.; 2: 1-8.
  • [10]. Matela, G. 2020. Schiff Bases and Complexes: A Review on Anti-Cancer Activity. Anti Cancer Agents Med. Chem.; 20: 1908-1917.
  • [11]. El-Sonbati, AZ, Mahmoud, WH, Mohammed, GG, Diab, MA, Morgan, ShM, Abbas, SY. 2019. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Applied Organometallic Chemistry; 33: e5048.
  • [12]. Segura, JL, Mancheno, MJ, Zamora, F. 2016. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev.; 45: 5635-5671.
  • [13]. Alyar, S, Alyar, H, Özmen, ÜÖ, Aktaş, O, Erdem, K. 2023. Biochemical properties of Schiff bases derived from FDA-approved sulfa drugs: Synthesis, ADME/molecular docking studies, and anticancer activity. Journal of Molecular Structure; 1293: 136167.
  • [14]. Andruh, M. 2015. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans.; 44: 16633-16653.
  • [15]. Mijatović, A, Gligorijević, N, Ćoćić, D, Spasić, S, Lolić, A, Aranđelović, S, Nikolić, M, Baošić, R, 2023. In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge. Journal of Inorganic Biochemistry; 244: 112224.
  • [16]. Benneth, MA, Smith, AK. 1974. Arene ruthenium (II) complexes formed by dehydrogenation of cyclohexadienes with ruthenium (III) trichloride. J. Chem. Soc. Dalton Trans.; 2: 233-241.
  • [17]. Güngör, SA, 2023. Synthesis, DNA Binding Properties, Molecular Docking and ADME Studies of Schiff Base Compound Containing Pyridine-Propargyl Group. Chemistry & Biodiversity; 20: e202300752.
  • [18]. Wajid, M, Uzair, M, Muhammad, G, Siddique, F, Bashir, M, Nadeem, S, Ashraf, A, Assad, N, Mushtaq, A, Rafay, MZ, Aqdas, A, Ahmad, S, Alasmari, AF. 2024. Sulfamethoxazole-derived Schiff bases: Synthesis, characterization, biological activities, molecular docking, DFT, and ADME studies. Journal of Molecular Structure; 1312: 138640.
  • [19]. Kökbudak, Z, Türkmenoğlu, B, Akkoç, S. 2022. A New Schiff Base Molecule Prepared from Pyrimidine-2-thione: Synthesis, Spectral Characterization, Cytotoxic Activity, DFT, and Molecular Docking Studies. Adıyaman University Journal of Science; 12(1): 9-25.
  • [20]. Micheal, S, Jeyeraman, P, Marimuthu, B, Rajasekar, R, Thanasamy, R, Kumar, KA, Raman, N. 2023. Influence of electron density on the biological activity of aniline substituted Schiff base: in silico, in vivo and in vitro authentication. Journal of Molecular Structure; 1279: 134987.
  • [21]. Daina, A, Michielin, O, Zoete V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep.; 7: 42717.
  • [22]. Daina, A, Zoete V. 2016. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11, 1117-1121.
  • [23]. He, X-X, Li, Y, Ma, B-B, Ke, Z, Liu, F-S. 2016. Sterically encumbered tetraarylimidazolium carbene Pd-PEPPSI complexes: highly efficient direct arylation of imidazoles with aryl bromides under aerobic conditions. Organometallics; 35: 2655-2663.
  • [24]. Winkler, A, Brandhorst, K, Freytag, M, Jones, PG, Tamm, M. 2016. Palladium (II) complexes with anionic N-heterocyclic carbene–borate ligands as catalysts for the amination of aryl halides. Organometallics; 35: 1160-1169.
  • [25]. Tu, T, Sun, Z, Fang, W, Xu, M, Zhou, Y. 2012. Robust acenaphthoimidazolylidene palladium complexes: highly efficient catalysts for suzuki–miyaura couplings with sterically hindered substrates. Organic letters; 14: 4250-4253.
  • [26]. Altenhoff, G, Goddard, R, Lehmann, CW, Glorius, F. 2004. Sterically demanding, bioxazoline-derived N-heterocyclic carbene ligands with restricted flexibility for catalysis. American Chemical Society; 126: 15195-15201.
  • [27]. Valente, C, Pompeo, M, Sayah, M, Organ, MG. 2014. Carbon–heteroatom coupling using Pd-PEPPSI complexes. Organic Process Research & Development; 18: 180-190.
  • [28]. Organ, MG, Çalimsiz, S, Sayah, M, Hoi, KH, Lough, AJ. 2009. Pd-PEPPSI-IPent: An Active, Sterically Demanding Cross-Coupling Catalyst and Its Application in the Synthesis of Tetra-Ortho-Substituted Biaryls. Angewandte Chemie International Edition; 48: 2383-2387.
  • [29]. Daina, A, Michielin, O, Zoete, V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports; 7:42717.
There are 29 citations in total.

Details

Primary Language English
Subjects Inorganic Materials
Journal Section Research Article
Authors

Serdar Batıkan Kavukcu 0000-0002-1168-5012

Submission Date March 25, 2025
Acceptance Date July 1, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 21 Issue: 4

Cite

APA Kavukcu, S. B. (2025). Computational ADME Analysis of a Schiff Base and its Ruthenium Complex: Implications for Medicinal Chemistry. Celal Bayar University Journal of Science, 21(4), 111-117. https://doi.org/10.18466/cbayarfbe.1665318
AMA 1.Kavukcu SB. Computational ADME Analysis of a Schiff Base and its Ruthenium Complex: Implications for Medicinal Chemistry. CBUJOS. 2025;21(4):111-117. doi:10.18466/cbayarfbe.1665318
Chicago Kavukcu, Serdar Batıkan. 2025. “Computational ADME Analysis of a Schiff Base and Its Ruthenium Complex: Implications for Medicinal Chemistry”. Celal Bayar University Journal of Science 21 (4): 111-17. https://doi.org/10.18466/cbayarfbe.1665318.
EndNote Kavukcu SB (December 1, 2025) Computational ADME Analysis of a Schiff Base and its Ruthenium Complex: Implications for Medicinal Chemistry. Celal Bayar University Journal of Science 21 4 111–117.
IEEE [1]S. B. Kavukcu, “Computational ADME Analysis of a Schiff Base and its Ruthenium Complex: Implications for Medicinal Chemistry”, CBUJOS, vol. 21, no. 4, pp. 111–117, Dec. 2025, doi: 10.18466/cbayarfbe.1665318.
ISNAD Kavukcu, Serdar Batıkan. “Computational ADME Analysis of a Schiff Base and Its Ruthenium Complex: Implications for Medicinal Chemistry”. Celal Bayar University Journal of Science 21/4 (December 1, 2025): 111-117. https://doi.org/10.18466/cbayarfbe.1665318.
JAMA 1.Kavukcu SB. Computational ADME Analysis of a Schiff Base and its Ruthenium Complex: Implications for Medicinal Chemistry. CBUJOS. 2025;21:111–117.
MLA Kavukcu, Serdar Batıkan. “Computational ADME Analysis of a Schiff Base and Its Ruthenium Complex: Implications for Medicinal Chemistry”. Celal Bayar University Journal of Science, vol. 21, no. 4, Dec. 2025, pp. 111-7, doi:10.18466/cbayarfbe.1665318.
Vancouver 1.Kavukcu SB. Computational ADME Analysis of a Schiff Base and its Ruthenium Complex: Implications for Medicinal Chemistry. CBUJOS [Internet]. 2025 Dec. 1;21(4):111-7. Available from: https://izlik.org/JA57CB43MY