Research Article
BibTex RIS Cite

Year 2025, Volume: 21 Issue: 4, 172 - 181, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1718352

Abstract

References

  • [1]. Angon P. B., Islam S.M., Shreejana K.C., Das, A., Anjum, N., Poudel, A., Suchi, S.A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain, Heliyon, 10, (7), e28357. (https://doi.org/10.1016/j.heliyon.2024.e28357)
  • [2]. Lubal M. (2024). Impact of heavy metal pollution on the environment, Uttar Pradesh Journal of Zoology, 45(11), 97-105. (10.56557/upjoz/2024/v45i114074)
  • [3]. Edo G. I., Samuel, P.O., Oloni, G.O., Ezekiel, G.O., Ikpekoro, V.O., Obasohan, P., Ongulu, J., Otunuya, C.F., Opiti, A.R., Ajakaye, R., Essaghah, A.E.A., Agbo, J.J. (2024). Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals, Chemistry and Ecology, 40(3), 322-349. (https://doi.org/10.1080/02757540.2024.2306839)
  • [4]. Kanupuru S. and Kumari, J.P.(2016). Impact of Lead on environment and human health-a review. World Journal of Pharmaceutical Research, 5(4), 531-554. (https://doi.org/10.20959/wjpr20164-5913)
  • [5]. Collin M. S., Venkatraman, S.K., Vijayakumar, N., Kanimozhi, V., Arbaaz, S.M., Stacey, R.G.S., Anusha, J., Choudhary, R., Lvov, V., Tovar, G.I., Senatov, F., Koppala, S., Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects on human: A review, Journal of Hazardous Materials Advances, 7, 100094. (https://doi.org/10.1016/j.hazadv.2022.100094)
  • [6]. Naja G. M., Volesky, B., Jin, X. L., Wang, L. K.(2025). 2 Toxicity and Sources of Pb, Cd, Control of Heavy Metals in the Environment: Recent Advances in Metal Toxicity, Pollution Control, and Remediation Techniques, 29. (https://doi.org/10.1201/9781003541615)
  • [7]. Varela R. L.(2023). The CDC's updated blood lead reference value and community implications in pediatrics, The Nurse Practitioner, 48(3), 6-9. (https://doi.org/10.1097/01.NPR.0000000000000016)
  • [8]. Needleman H.(2004). Lead poisoning, Annu. Rev. Med., 55, 209-222. (https://doi.org/10.1146/annurev.med.55.091902.103653)
  • [9]. Demayo A., Taylor, M. C., Taylor, K. W., Hodson, P. V., Hammond, P. B. (2009). Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock, Critical Reviews in Environmental Science and Technology,12(4), 257-305. (https://doi.org/10.1080/10643388209381698)
  • [10]. Brown M. J. and Margolis, S. (2012). Lead in drinking water and human blood lead levels in the United States. MMWR Suppl, 10;61(4):1-9.
  • [11]. Ravenscroft J., Roy, A., Queirolo, E.I., Manay, N., Martinez, G., Peregalli, F., Kordas, K. (2018). Drinking water lead, iron and zinc concentrations as predictors of blood lead levels and urinary lead excretion in school children from Montevideo, Uruguay, Chemosphere, 212, 694-704. (https://doi.org/10.1016/j.chemosphere.2018.07.154)
  • [12]. EPA U. National Recommended Water Quality Criteria-Aquatic Life Criteria Table. https://19january2021snapshot.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table_.html (accessed 5 June 2025, 2024).
  • [13]. Ariño A., Beltrán, J. A., Herrera, A., Roncalés, P. (2013)."Fish and seafood: Nutritional Value," in Encyclopedia of Human Nutrition (Third Edition), B. Caballero Ed. Waltham: Academic Press, 254-261. (https://doi.org/10.1016/B978-0-12-375083-9.00110-0)
  • [14]. Phogat S., Dahiya, T. Jangra, M. Kumari, A., Kumar, A. (2022). Nutritional Benefits of Fish Consumption for Humans: A Review, International Journal of Environment and Climate Change, 12(12), 1443-1457. (https://doi.org/10.9734/ijecc/2022/v12i121585)
  • [15]. Almashhadany D. A., Rashid, R. F. Altaif, K. I. Mohammed, S. H. Mohammed, H. I. and Al-Bader, S. M. (2025) Heavy metal(loid) bioaccumulation in fish and its implications for human health, Italian Journal of Food Science, 14(1). (https://doi.org/10.4081/ijfs.2024.12782)
  • [16]. Kaya H., Akbulut, M. (2015). Effects of waterborne lead exposure in Mozambique tilapia: oxidative stress, osmoregulatory responses, and tissue accumulation. Journal of Aquatic Animal Health, 27(2), 77-87. (https://doi.org/10.1080/08997659.2014.1001533)
  • [17]. Yancheva V., Stoyanova, S., Velcheva, I., Georgieva, E. (2020). Fish as indicators for environmental monitoring and health risk assessment regarding aquatic contamination with pesticides, International Journal of Zoology and Animal Biology, 3(1), 1-6. (https://doi.org/10.23880/izab-16000210)
  • [18]. Vallese F. D., Stupniki, S., Trillini, M., Belén, F., Di Nezio, M.S., Juan, A., Pistonesi, M.F. (2024). Bioaccumulation Study of Cadmium and Lead in Cyprinus carpio from the Colorado River, Using Automated Electrochemical Detection, Water, 17(77), 1-15. (https://doi.org/10.3390/w17010077)
  • [19]. Korn M. d. G. A., de Andrade, J. B., de Jesus, D.J., Lemos, V.A., Bandeira, M.L.S.F., dos Santos, W.N.L, Bezerra, M.A., Amorim, F.A.C., Souza, A.S., Ferreira, S.L.C. (2006). Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review, Talanta, 69(1), 16-24. (https://doi.org/10.1016/j.talanta.2005.10.043)
  • [20]. Zhang N., Peng, Wang, H. S., Hu, B. (2011). Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS, Microchimica Acta, 175, 121-128. (https://doi.org/10.1007/s00604-011-0659-3)
  • [21]. Paul K. B., Kumar, S., Tripathy, S., Vanjari, S. R. K., Singh, V., Singh, S. G. (2016). A highly sensitive self assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: Targeted towards rapid, early diagnosis of malaria, Biosensors and Bioelectronics, 15(80), 39-46. (https://doi.org/10.1016/j.bios.2016.01.036)
  • [22]. Bukkitgar S.D., Shetti, N.P., Malladi, R.S., Reddy, K.R., Kalanur, S. S., Aminabhavi, T. M. (2020.) Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol, Journal of Molecular Liquids, 300, 112368. (https://doi.org/10.1016/j.molliq.2019.112368)
  • [23]. Kumar S., Vasylieva, N., Singh, V., Hammock, B., Singh, S. G. (2020). A facile, sensitive and rapid sensing platform based on CoZnO for detection of fipronil; an environmental toxin, Electroanalysis, 32( 9), 2056-2064. (https://doi.org/10.1002/elan.202000051)
  • [24]. Tunc-Ata M., Akturk, E. Z., Njjar, M., Kaya, A., Akdogan, A., Onac, C. (2025). Determination of retrorsine in thyme via molecularly imprinted electrochemical sensor: Validation and comparison with chromatographic technique, Food Chemistry, 418, 144818. (https://doi.org/10.1016/j.foodchem.2025.144818)
  • [25]. Njjar M., Aktürk, E. Z., Kaya, A., Onac, C., Akdogan, A. (2025). A novel MIP electrochemical sensor based on a CuFe2O4NPs@rGO nanocomposite and its application in breast milk samples for the determination of fipronil, Analytical Methods, 17, 5508-5518. (https://doi.org/10.1039/D5AY00911A)
  • [26]. Ferrer C., Lozano, A., Agüera, A., Girón, A. J., Fernández-Alba, A. R. (2011). Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. Journal of Chromatography A, 1218(42), 7634-7639. (https://doi.org/10.1016/j.chroma.2011.07.033)
  • [27]. Dhaffouli A., Salazar-Carballo, P. A., Carinelli, S., Holzinger, M., Barhoumi, H. (2024). Improved electrochemical sensor using functionalized silica nanoparticles (SiO2-APTES) for high selectivity detection of lead ions, Materials Chemistry and Physics, 318, 129253. (https://doi.org/10.1016/j.matchemphys.2024.129253)
  • [28]. Yao C., Wang, H., Zhou, J., Song, W., Rao, Q., Gao, Z., Liu, C., Song, W., Liang, Y. (2024). Exploring a novel, sensitive, and efficient Pb2+ electrochemical sensing strategy based on Cu-MOF, Arabian Journal of Chemistry, 17, 105498. (https://doi.org/10.1016/j.arabjc.2023.105498)
  • [29]. Ding J., Liu, Y., Zhang, D., Yu, M., Zhan, X., Zhang, D., Zhou, P. (2018). An electrochemical aptasensor based on gold@ polypyrrole composites for detection of lead ions, Microchimica Acta, 13;185(12), 545, 1-7, 2018. (https://doi.org/10.1007/s00604-018-3068-z)
  • [30]. Luo X., Huang, W., Shi, Q., Xu, W., Luan, Y., Yang, Y., Wang, H., Yang, W. (2017). Electrochemical sensor based on lead ion-imprinted polymer particles for ultra-trace determination of lead ions in different real samples, RSC Advances, 7(26), 16033-16040. (https://doi.org/10.1039/C6RA25791G)
  • [31]. Zhang H., Li,Y., Zhang, Y., Wu, J., Li, S., Li, L.(2023). A disposable electrochemical sensor for lead ion detection based on in situ polymerization of conductive polypyrrole coating, Journal of Electronic Materials, 52(3), 1819-1828. (https://doi.org/10.1007/s11664-022-10175-y)

A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver

Year 2025, Volume: 21 Issue: 4, 172 - 181, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1718352

Abstract

This study presents the development and optimization of a simple, unmodified screen-printed electrode (SPE) method for the electrochemical detection of lead Pb(II), ions using cyclic voltammetry (CV). Key experimental parameters, including the type and concentration of supporting electrolyte and scan rate, were systematically evaluated to enhance the analytical performance of the sensor. Among the electrolytes tested, 0.1 M potassium chloride (KCl) provided the highest peak current and best-defined redox features, while a scan rate of 75 mV/s offered optimal peak resolution and sensitivity. Analytical figures of merit demonstrated a linear detection range of 0.25–10.0 mM, a limit of detection (LOD) of 0.096 mM. The proposed method was successfully applied to fish liver tissue (Mugil cephalus), showing consistent recoveries of 97.16-115.08%. This study presents a simple and cost-effective approach, achieved without the need for nanomaterial enhancements or surface modifications. This study also aims to evaluate the performance of the SPE in detecting Pb(II) in fish liver samples, comparing its sensitivity and accuracy to Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). It demonstrates the viability of using unmodified SPEs for reliable Pb(II) detection in complex matrices, providing a practical alternative for environmental and biological monitoring applications.

References

  • [1]. Angon P. B., Islam S.M., Shreejana K.C., Das, A., Anjum, N., Poudel, A., Suchi, S.A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain, Heliyon, 10, (7), e28357. (https://doi.org/10.1016/j.heliyon.2024.e28357)
  • [2]. Lubal M. (2024). Impact of heavy metal pollution on the environment, Uttar Pradesh Journal of Zoology, 45(11), 97-105. (10.56557/upjoz/2024/v45i114074)
  • [3]. Edo G. I., Samuel, P.O., Oloni, G.O., Ezekiel, G.O., Ikpekoro, V.O., Obasohan, P., Ongulu, J., Otunuya, C.F., Opiti, A.R., Ajakaye, R., Essaghah, A.E.A., Agbo, J.J. (2024). Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals, Chemistry and Ecology, 40(3), 322-349. (https://doi.org/10.1080/02757540.2024.2306839)
  • [4]. Kanupuru S. and Kumari, J.P.(2016). Impact of Lead on environment and human health-a review. World Journal of Pharmaceutical Research, 5(4), 531-554. (https://doi.org/10.20959/wjpr20164-5913)
  • [5]. Collin M. S., Venkatraman, S.K., Vijayakumar, N., Kanimozhi, V., Arbaaz, S.M., Stacey, R.G.S., Anusha, J., Choudhary, R., Lvov, V., Tovar, G.I., Senatov, F., Koppala, S., Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects on human: A review, Journal of Hazardous Materials Advances, 7, 100094. (https://doi.org/10.1016/j.hazadv.2022.100094)
  • [6]. Naja G. M., Volesky, B., Jin, X. L., Wang, L. K.(2025). 2 Toxicity and Sources of Pb, Cd, Control of Heavy Metals in the Environment: Recent Advances in Metal Toxicity, Pollution Control, and Remediation Techniques, 29. (https://doi.org/10.1201/9781003541615)
  • [7]. Varela R. L.(2023). The CDC's updated blood lead reference value and community implications in pediatrics, The Nurse Practitioner, 48(3), 6-9. (https://doi.org/10.1097/01.NPR.0000000000000016)
  • [8]. Needleman H.(2004). Lead poisoning, Annu. Rev. Med., 55, 209-222. (https://doi.org/10.1146/annurev.med.55.091902.103653)
  • [9]. Demayo A., Taylor, M. C., Taylor, K. W., Hodson, P. V., Hammond, P. B. (2009). Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock, Critical Reviews in Environmental Science and Technology,12(4), 257-305. (https://doi.org/10.1080/10643388209381698)
  • [10]. Brown M. J. and Margolis, S. (2012). Lead in drinking water and human blood lead levels in the United States. MMWR Suppl, 10;61(4):1-9.
  • [11]. Ravenscroft J., Roy, A., Queirolo, E.I., Manay, N., Martinez, G., Peregalli, F., Kordas, K. (2018). Drinking water lead, iron and zinc concentrations as predictors of blood lead levels and urinary lead excretion in school children from Montevideo, Uruguay, Chemosphere, 212, 694-704. (https://doi.org/10.1016/j.chemosphere.2018.07.154)
  • [12]. EPA U. National Recommended Water Quality Criteria-Aquatic Life Criteria Table. https://19january2021snapshot.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table_.html (accessed 5 June 2025, 2024).
  • [13]. Ariño A., Beltrán, J. A., Herrera, A., Roncalés, P. (2013)."Fish and seafood: Nutritional Value," in Encyclopedia of Human Nutrition (Third Edition), B. Caballero Ed. Waltham: Academic Press, 254-261. (https://doi.org/10.1016/B978-0-12-375083-9.00110-0)
  • [14]. Phogat S., Dahiya, T. Jangra, M. Kumari, A., Kumar, A. (2022). Nutritional Benefits of Fish Consumption for Humans: A Review, International Journal of Environment and Climate Change, 12(12), 1443-1457. (https://doi.org/10.9734/ijecc/2022/v12i121585)
  • [15]. Almashhadany D. A., Rashid, R. F. Altaif, K. I. Mohammed, S. H. Mohammed, H. I. and Al-Bader, S. M. (2025) Heavy metal(loid) bioaccumulation in fish and its implications for human health, Italian Journal of Food Science, 14(1). (https://doi.org/10.4081/ijfs.2024.12782)
  • [16]. Kaya H., Akbulut, M. (2015). Effects of waterborne lead exposure in Mozambique tilapia: oxidative stress, osmoregulatory responses, and tissue accumulation. Journal of Aquatic Animal Health, 27(2), 77-87. (https://doi.org/10.1080/08997659.2014.1001533)
  • [17]. Yancheva V., Stoyanova, S., Velcheva, I., Georgieva, E. (2020). Fish as indicators for environmental monitoring and health risk assessment regarding aquatic contamination with pesticides, International Journal of Zoology and Animal Biology, 3(1), 1-6. (https://doi.org/10.23880/izab-16000210)
  • [18]. Vallese F. D., Stupniki, S., Trillini, M., Belén, F., Di Nezio, M.S., Juan, A., Pistonesi, M.F. (2024). Bioaccumulation Study of Cadmium and Lead in Cyprinus carpio from the Colorado River, Using Automated Electrochemical Detection, Water, 17(77), 1-15. (https://doi.org/10.3390/w17010077)
  • [19]. Korn M. d. G. A., de Andrade, J. B., de Jesus, D.J., Lemos, V.A., Bandeira, M.L.S.F., dos Santos, W.N.L, Bezerra, M.A., Amorim, F.A.C., Souza, A.S., Ferreira, S.L.C. (2006). Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review, Talanta, 69(1), 16-24. (https://doi.org/10.1016/j.talanta.2005.10.043)
  • [20]. Zhang N., Peng, Wang, H. S., Hu, B. (2011). Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS, Microchimica Acta, 175, 121-128. (https://doi.org/10.1007/s00604-011-0659-3)
  • [21]. Paul K. B., Kumar, S., Tripathy, S., Vanjari, S. R. K., Singh, V., Singh, S. G. (2016). A highly sensitive self assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: Targeted towards rapid, early diagnosis of malaria, Biosensors and Bioelectronics, 15(80), 39-46. (https://doi.org/10.1016/j.bios.2016.01.036)
  • [22]. Bukkitgar S.D., Shetti, N.P., Malladi, R.S., Reddy, K.R., Kalanur, S. S., Aminabhavi, T. M. (2020.) Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol, Journal of Molecular Liquids, 300, 112368. (https://doi.org/10.1016/j.molliq.2019.112368)
  • [23]. Kumar S., Vasylieva, N., Singh, V., Hammock, B., Singh, S. G. (2020). A facile, sensitive and rapid sensing platform based on CoZnO for detection of fipronil; an environmental toxin, Electroanalysis, 32( 9), 2056-2064. (https://doi.org/10.1002/elan.202000051)
  • [24]. Tunc-Ata M., Akturk, E. Z., Njjar, M., Kaya, A., Akdogan, A., Onac, C. (2025). Determination of retrorsine in thyme via molecularly imprinted electrochemical sensor: Validation and comparison with chromatographic technique, Food Chemistry, 418, 144818. (https://doi.org/10.1016/j.foodchem.2025.144818)
  • [25]. Njjar M., Aktürk, E. Z., Kaya, A., Onac, C., Akdogan, A. (2025). A novel MIP electrochemical sensor based on a CuFe2O4NPs@rGO nanocomposite and its application in breast milk samples for the determination of fipronil, Analytical Methods, 17, 5508-5518. (https://doi.org/10.1039/D5AY00911A)
  • [26]. Ferrer C., Lozano, A., Agüera, A., Girón, A. J., Fernández-Alba, A. R. (2011). Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. Journal of Chromatography A, 1218(42), 7634-7639. (https://doi.org/10.1016/j.chroma.2011.07.033)
  • [27]. Dhaffouli A., Salazar-Carballo, P. A., Carinelli, S., Holzinger, M., Barhoumi, H. (2024). Improved electrochemical sensor using functionalized silica nanoparticles (SiO2-APTES) for high selectivity detection of lead ions, Materials Chemistry and Physics, 318, 129253. (https://doi.org/10.1016/j.matchemphys.2024.129253)
  • [28]. Yao C., Wang, H., Zhou, J., Song, W., Rao, Q., Gao, Z., Liu, C., Song, W., Liang, Y. (2024). Exploring a novel, sensitive, and efficient Pb2+ electrochemical sensing strategy based on Cu-MOF, Arabian Journal of Chemistry, 17, 105498. (https://doi.org/10.1016/j.arabjc.2023.105498)
  • [29]. Ding J., Liu, Y., Zhang, D., Yu, M., Zhan, X., Zhang, D., Zhou, P. (2018). An electrochemical aptasensor based on gold@ polypyrrole composites for detection of lead ions, Microchimica Acta, 13;185(12), 545, 1-7, 2018. (https://doi.org/10.1007/s00604-018-3068-z)
  • [30]. Luo X., Huang, W., Shi, Q., Xu, W., Luan, Y., Yang, Y., Wang, H., Yang, W. (2017). Electrochemical sensor based on lead ion-imprinted polymer particles for ultra-trace determination of lead ions in different real samples, RSC Advances, 7(26), 16033-16040. (https://doi.org/10.1039/C6RA25791G)
  • [31]. Zhang H., Li,Y., Zhang, Y., Wu, J., Li, S., Li, L.(2023). A disposable electrochemical sensor for lead ion detection based on in situ polymerization of conductive polypyrrole coating, Journal of Electronic Materials, 52(3), 1819-1828. (https://doi.org/10.1007/s11664-022-10175-y)
There are 31 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Research Article
Authors

Ahmet Kaya 0000-0001-8805-8474

Canan Onac 0000-0003-3799-3678

Submission Date June 12, 2025
Acceptance Date October 13, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 21 Issue: 4

Cite

APA Kaya, A., & Onac, C. (2025). A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver. Celal Bayar University Journal of Science, 21(4), 172-181. https://doi.org/10.18466/cbayarfbe.1718352
AMA Kaya A, Onac C. A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver. CBUJOS. December 2025;21(4):172-181. doi:10.18466/cbayarfbe.1718352
Chicago Kaya, Ahmet, and Canan Onac. “A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver”. Celal Bayar University Journal of Science 21, no. 4 (December 2025): 172-81. https://doi.org/10.18466/cbayarfbe.1718352.
EndNote Kaya A, Onac C (December 1, 2025) A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver. Celal Bayar University Journal of Science 21 4 172–181.
IEEE A. Kaya and C. Onac, “A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver”, CBUJOS, vol. 21, no. 4, pp. 172–181, 2025, doi: 10.18466/cbayarfbe.1718352.
ISNAD Kaya, Ahmet - Onac, Canan. “A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver”. Celal Bayar University Journal of Science 21/4 (December2025), 172-181. https://doi.org/10.18466/cbayarfbe.1718352.
JAMA Kaya A, Onac C. A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver. CBUJOS. 2025;21:172–181.
MLA Kaya, Ahmet and Canan Onac. “A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver”. Celal Bayar University Journal of Science, vol. 21, no. 4, 2025, pp. 172-81, doi:10.18466/cbayarfbe.1718352.
Vancouver Kaya A, Onac C. A Sensitive Electrochemical Approach for Monitoring Lead in Fish Liver. CBUJOS. 2025;21(4):172-81.