Research Article
BibTex RIS Cite
Year 2017, , 615 - 618, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339313

Abstract

References

  • 1. Kuanar, M.; Kuanar, S.K.; Mishra, B.K.; Gutman, I. Correlation of line graph parameters with physicochemical properties of octane isomers. Indian Journal of Chemistry-Section A. 1999; 38, 525-528.
  • 2. Randić, M. Quantitative structure-property relationship. Boiling points of planar benzenoids. New Journal of Chemistry. 1996; 20,1001-1009.
  • 3. Randić, M.; Pompe, M. On characterization of CC double bond in alkenes. SAR and QSAR in Environmental Research. 1999; 10, 451-471.
  • 4. Sunilkumar, M.H. Correlation of domination parameters with physicochemical properties of octane isomers. Applied Mathematics and Nonlinear Sciences. 2016; 1, 345-352.
  • 5. Chellali, M.; Haynes, T.W.; Hedetniemi, S.T.; Lewis T.M. On ve-degrees and ev-degrees in graphs, .Discrete Mathematics. 2017; 340, 31-38.
  • 6. Randić, M. Characterization of molecular branching. Journal of the American Chemical Society. 1975; 97, 6609-6615.
  • 7. Kincaid, R.K.; Kunkler, S.J.; Lamar, M.D.; Phillips, D.J. Algo-rithms and complexity results for findings graphs with extremal Randić index. Networks. 2016; 67, 338-347.
  • 8. Banerjee, A.; Mehatari, R. An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices. Linear Algebra Applications 2016; 505, 85-96.
  • 9. Gu, R.; Huang, F.; Li, X. Skew Randić matrix and skew Randić energy. Transaction on Combinatorics 2016; 5,1-14.

A New Tool for QSPR Researches: ev-degree Randić Index

Year 2017, , 615 - 618, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339313

Abstract

Topological indices have important role in theoretical chemistry
for QSPR researches. Among the all topological indices the Randić index has
been used more considerably than any other topological indices in chemical and
mathematical literature. Most of the topological indices as in the Randić index
are based on the degrees of the vertices of a connected graph. Recently novel
two degree concepts have been defined in graph theory; ev-degrees and ve-degrees.
In this study ev-degree Randić index is defined by using ev-degree concept as
parallel to their corresponding classical degree version. This new ev-degree
Randić index is compared with the Randić index by modelling some
physicochemical properties of octane isomers. It is showed that the ev-degree
Randić index give better correlation than the Randić index to predict the
entropy, acentric factor and  standard
enthalpy of vaporization of octanes.  Also
the exact values of the ev-degree Randić index for the well-known graph classes
such as; paths, cycles, stars and complete graphs are given.

References

  • 1. Kuanar, M.; Kuanar, S.K.; Mishra, B.K.; Gutman, I. Correlation of line graph parameters with physicochemical properties of octane isomers. Indian Journal of Chemistry-Section A. 1999; 38, 525-528.
  • 2. Randić, M. Quantitative structure-property relationship. Boiling points of planar benzenoids. New Journal of Chemistry. 1996; 20,1001-1009.
  • 3. Randić, M.; Pompe, M. On characterization of CC double bond in alkenes. SAR and QSAR in Environmental Research. 1999; 10, 451-471.
  • 4. Sunilkumar, M.H. Correlation of domination parameters with physicochemical properties of octane isomers. Applied Mathematics and Nonlinear Sciences. 2016; 1, 345-352.
  • 5. Chellali, M.; Haynes, T.W.; Hedetniemi, S.T.; Lewis T.M. On ve-degrees and ev-degrees in graphs, .Discrete Mathematics. 2017; 340, 31-38.
  • 6. Randić, M. Characterization of molecular branching. Journal of the American Chemical Society. 1975; 97, 6609-6615.
  • 7. Kincaid, R.K.; Kunkler, S.J.; Lamar, M.D.; Phillips, D.J. Algo-rithms and complexity results for findings graphs with extremal Randić index. Networks. 2016; 67, 338-347.
  • 8. Banerjee, A.; Mehatari, R. An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices. Linear Algebra Applications 2016; 505, 85-96.
  • 9. Gu, R.; Huang, F.; Li, X. Skew Randić matrix and skew Randić energy. Transaction on Combinatorics 2016; 5,1-14.
There are 9 citations in total.

Details

Journal Section Articles
Authors

Süleyman Ediz

Publication Date September 30, 2017
Published in Issue Year 2017

Cite

APA Ediz, S. (2017). A New Tool for QSPR Researches: ev-degree Randić Index. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(3), 615-618. https://doi.org/10.18466/cbayarfbe.339313
AMA Ediz S. A New Tool for QSPR Researches: ev-degree Randić Index. CBUJOS. September 2017;13(3):615-618. doi:10.18466/cbayarfbe.339313
Chicago Ediz, Süleyman. “A New Tool for QSPR Researches: Ev-Degree Randić Index”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13, no. 3 (September 2017): 615-18. https://doi.org/10.18466/cbayarfbe.339313.
EndNote Ediz S (September 1, 2017) A New Tool for QSPR Researches: ev-degree Randić Index. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13 3 615–618.
IEEE S. Ediz, “A New Tool for QSPR Researches: ev-degree Randić Index”, CBUJOS, vol. 13, no. 3, pp. 615–618, 2017, doi: 10.18466/cbayarfbe.339313.
ISNAD Ediz, Süleyman. “A New Tool for QSPR Researches: Ev-Degree Randić Index”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13/3 (September 2017), 615-618. https://doi.org/10.18466/cbayarfbe.339313.
JAMA Ediz S. A New Tool for QSPR Researches: ev-degree Randić Index. CBUJOS. 2017;13:615–618.
MLA Ediz, Süleyman. “A New Tool for QSPR Researches: Ev-Degree Randić Index”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 3, 2017, pp. 615-8, doi:10.18466/cbayarfbe.339313.
Vancouver Ediz S. A New Tool for QSPR Researches: ev-degree Randić Index. CBUJOS. 2017;13(3):615-8.

Cited By

On Vertex-Edge Degree Based Properties of Sierpinski Graphs
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi
https://doi.org/10.47495/okufbed.1099362