Research Article
BibTex RIS Cite
Year 2017, , 893 - 899, 29.12.2017
https://doi.org/10.18466/cbayarfbe.370362

Abstract

References

  • 1. Flannigan, D.J.; Samartzis, P.C.; Yurtsever, A.; Zewail, A.H. Nanomechanical motion of cantilevers: direct imaging in real space and time with 4D electron microscopy, Nano Letters, 2009, 9(2), 875–81.
  • 2. Beni, Y.T.; Karimipour, I.; Abadyan, M. Modeling the instability of electrostatic nano-bridges and nano-cantilevers using modified strain gradient theory, Applied Mathematical Modelling, 2015, 39(9), 2633–2648.
  • 3. Korayem, A.H.; Kianfar, A.; Korayemn, M.H. Modeling and simulating of V-shaped piezoelectric micro-cantilevers using MCS theory considering the various surface geometries, Physica E, 2016, 84, 268–279.
  • 4. Eringen, A.C. Nonlocal polar elastic continua, International Journal of Engineering Science, 1972, 10, 1–16.
  • 5. Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P. Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 2002, 39, 2731–2743.
  • 6. Gurtin, M.E.; Weissmuller, J.; Larche, F. A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A, 1998, 78(5), 1093–1109.
  • 7. Aifantis, E.C. Strain gradient interpretation of size effects, International Journal of Fracture, 1999, 95, 1–4.
  • 8. Eringen, A.C. Theory of micropolar plates, Zeitschrift fur Angewandte Mathematik und Physik, 1967, 18, 12–30.
  • 9. Park, S.K.; Gao, X.L. Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, 2006, 16, 2355-2359.
  • 10. Kong, S,; Zhou, S.; Nie, Z.; Wang, K. The size-dependent natural frequency of Bernoulli-Euler micro-beams, International Journal of Engineering Science, 2008, 46, 427-437.
  • 11. Şimşek, M. Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory, International Journal of Engineering Science, 2010, 48, 1721-1732.
  • 12. Asghari, M,; Kahrobaiyan, M.H.; Ahmadian, M.T. A nonlinear Timoshenko beam formulation based on the modified couple stress theory, International Journal of Engineering Science, 2010, 48, 1749-1761.
  • 13. Asghari, M.; Kahrobaiyan, M.H.; Rahaeifard, M.; Ahmadian, M.T. Investigation of the size effects in Timoshenko beams based on the couple stress theory, Archive of Applied Mechanics, 2011, 81, 863-874.
  • 14. Kahrobaiyan, M.H.; Asghari, M.; Ahmadian, M.T. A Timoshenko beam element based on the modified couple stress theory, International Journal of Mechanical Science, 2014, 79, 75-83.
  • 15. Kahrobaiyan, M.H.; Asghari, M.; Rahaeifard, M.; Ahmadian, M.T. Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory, International Journal of Engineering Science, 2010, 48, 1985-1994.
  • 16. Fu, Y.; Zhang, J. Modeling and analysis of microtubules based on a modified couple stress theory, Physica E, 2010, 42, 1741-1745.
  • 17. Ma, H.M.; Gao, X.L.; Reddy, J.N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of Mechanics and Physics of Solids, 2008, 56, 3379-3391.
  • 18. Chen, W.; Weiwei, C.; Sze, K.Y. A model of composite laminated Reddy beam based on a modified couple-stress theory, Composite Structures, 2012, 94, 2599-2609.
  • 19. Ke, L.L.; Wang, Y.S. Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, Physica E, 2011, 43, 1031-1039.
  • 20. Roque, C.M.C.; Fidalgo, D.S.; Ferreira, A.J.M.; Reddy, J.N. A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method, Composite Structures, 2013, 96, 532-537.
  • 21. Baghani, M. Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory, International Journal of Engineering Science, 2012, 54, 99-105.
  • 22. Togun, N.; Bağdatlı, S.M. Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory, Composites Part B: Engineering, 2016, 97, 255-262. 23. Atcı, D.; Bağdatlı, S.M. Vibrations of fluid conveying microbeams under non-ideal boundary conditions, Microsystem Technologies, 2017, 1-12.
  • 24. Kocaturk, T.; Akbas, S.D. Wave propagation in a microbeam based on the modified couple stress theory, Structural Engineering and Mechanics, 2013, 46(3), 417-431.
  • 25. Akbas, S.D. Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium, Smart Structures and Systems, 2016, 18(6), 1125-1143.
  • 26. Akbas, S.D. Analytical solutions for static bending of edge cracked micro beams, Structural Engineering and Mechanics, 2016, 59(3), 579-599.
  • 27. Civalek, Ö. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method, Composites Part B: Engineering, 2017, 111, 45-59.
  • 28. Shen, J.P.; Li, C. A. Semi-continuum-based bending analysis for extreme-thin micro/nano-beams and new proposal for nonlocal differential constitution, Composite Structures, 2017, 172, 210-220.
  • 29. Dehrouyeh-Semnani, A.M.; Mostafaei, H.; and Nikkhah-Bahrami, M. Free flexural vibration of geometrically imperfect functionally graded microbeams, International Journal of Engineering Science, 2016, 105, 56-79.
  • 30. Ghayesh, M.H.; Farokhi, H.; Amabili, M. Nonlinear dynamics of a microscale beam based on the modified couple stress theory, Composites: Part B, 2013a, 50, 318-324.
  • 31. Ghayesh, M.H.; Amabili, M.; Farokhi, H. Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory, International Journal of Engineering Science, 2013b, 63, 52-60.
  • 32. Wang, Y.G.; Lin, W.H.; Liu, N. Nonlinear free vibration of a microscale beam based on modified couple stress theory, Physica E, 2013, 47, 80-85.
  • 33. Xia, W.; Wang, L.; Yin, L. Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration, International Journal of Engineering Science, 2010, 48, 2044-2053.
  • 34. Şimşek, M. Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method, Composite Structures, 2014, 112, 264-272.
  • 35. Toupin, R.A. Theories of elasticity with couple stress, Archive for Rational Mechanics and Analysis, 1962, 17, 85–112.
  • 36. Mindlin, R.D.; Tiersten, H.F. Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 1962, 11, 415–448.
  • 37. Mindlin, R.D., Influence of couple-stresses on stress concentrations, Experimental Mechanics, 1964, 3, 1–7.
  • 38. Nayfeh, A.H., Mook, D.T. Nonlinear Oscillations; John Wiley, New York, 1979.
  • 39. Nayfeh, A.H. Introduction to Perturbation Techniques, John Wiley, New York, 1981.
  • 40. Barretta, R.; Luciano, R.; Willis, J.R. On torsion of random composite beams, Composite Structures, 2015, 132, 915-922

Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory

Year 2017, , 893 - 899, 29.12.2017
https://doi.org/10.18466/cbayarfbe.370362

Abstract

This paper presents the implementation of non-classical continuum theory
for simply supported nanobeam. Hamilton’s principle and modified couple stress
methods are employed for obtaining differential equation of motion of nanobeam
in cooperation with suitable boundary conditions. An approximate solution of
the presented system is developed considering the method of multiple scales
which is one of the perturbation techniques. T
he
effect of material length scale parameter ζ and the Poisson’s ratio υ on the natural
frequencies are
determined and represented in table form and graphically. Besides,
dimensionless natural of frequency of nanobeam are investigated by taking into
account various system parameters. The results of the system show that the size
influence is very crucial for extremely thin beams with a height of nanoscale
dimension. Besides, the outcome of the system shows that the beam modeled
considering non-classical continuum theory is stiffer than those of classical
one.

References

  • 1. Flannigan, D.J.; Samartzis, P.C.; Yurtsever, A.; Zewail, A.H. Nanomechanical motion of cantilevers: direct imaging in real space and time with 4D electron microscopy, Nano Letters, 2009, 9(2), 875–81.
  • 2. Beni, Y.T.; Karimipour, I.; Abadyan, M. Modeling the instability of electrostatic nano-bridges and nano-cantilevers using modified strain gradient theory, Applied Mathematical Modelling, 2015, 39(9), 2633–2648.
  • 3. Korayem, A.H.; Kianfar, A.; Korayemn, M.H. Modeling and simulating of V-shaped piezoelectric micro-cantilevers using MCS theory considering the various surface geometries, Physica E, 2016, 84, 268–279.
  • 4. Eringen, A.C. Nonlocal polar elastic continua, International Journal of Engineering Science, 1972, 10, 1–16.
  • 5. Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P. Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 2002, 39, 2731–2743.
  • 6. Gurtin, M.E.; Weissmuller, J.; Larche, F. A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A, 1998, 78(5), 1093–1109.
  • 7. Aifantis, E.C. Strain gradient interpretation of size effects, International Journal of Fracture, 1999, 95, 1–4.
  • 8. Eringen, A.C. Theory of micropolar plates, Zeitschrift fur Angewandte Mathematik und Physik, 1967, 18, 12–30.
  • 9. Park, S.K.; Gao, X.L. Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, 2006, 16, 2355-2359.
  • 10. Kong, S,; Zhou, S.; Nie, Z.; Wang, K. The size-dependent natural frequency of Bernoulli-Euler micro-beams, International Journal of Engineering Science, 2008, 46, 427-437.
  • 11. Şimşek, M. Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory, International Journal of Engineering Science, 2010, 48, 1721-1732.
  • 12. Asghari, M,; Kahrobaiyan, M.H.; Ahmadian, M.T. A nonlinear Timoshenko beam formulation based on the modified couple stress theory, International Journal of Engineering Science, 2010, 48, 1749-1761.
  • 13. Asghari, M.; Kahrobaiyan, M.H.; Rahaeifard, M.; Ahmadian, M.T. Investigation of the size effects in Timoshenko beams based on the couple stress theory, Archive of Applied Mechanics, 2011, 81, 863-874.
  • 14. Kahrobaiyan, M.H.; Asghari, M.; Ahmadian, M.T. A Timoshenko beam element based on the modified couple stress theory, International Journal of Mechanical Science, 2014, 79, 75-83.
  • 15. Kahrobaiyan, M.H.; Asghari, M.; Rahaeifard, M.; Ahmadian, M.T. Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory, International Journal of Engineering Science, 2010, 48, 1985-1994.
  • 16. Fu, Y.; Zhang, J. Modeling and analysis of microtubules based on a modified couple stress theory, Physica E, 2010, 42, 1741-1745.
  • 17. Ma, H.M.; Gao, X.L.; Reddy, J.N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of Mechanics and Physics of Solids, 2008, 56, 3379-3391.
  • 18. Chen, W.; Weiwei, C.; Sze, K.Y. A model of composite laminated Reddy beam based on a modified couple-stress theory, Composite Structures, 2012, 94, 2599-2609.
  • 19. Ke, L.L.; Wang, Y.S. Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, Physica E, 2011, 43, 1031-1039.
  • 20. Roque, C.M.C.; Fidalgo, D.S.; Ferreira, A.J.M.; Reddy, J.N. A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method, Composite Structures, 2013, 96, 532-537.
  • 21. Baghani, M. Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory, International Journal of Engineering Science, 2012, 54, 99-105.
  • 22. Togun, N.; Bağdatlı, S.M. Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory, Composites Part B: Engineering, 2016, 97, 255-262. 23. Atcı, D.; Bağdatlı, S.M. Vibrations of fluid conveying microbeams under non-ideal boundary conditions, Microsystem Technologies, 2017, 1-12.
  • 24. Kocaturk, T.; Akbas, S.D. Wave propagation in a microbeam based on the modified couple stress theory, Structural Engineering and Mechanics, 2013, 46(3), 417-431.
  • 25. Akbas, S.D. Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium, Smart Structures and Systems, 2016, 18(6), 1125-1143.
  • 26. Akbas, S.D. Analytical solutions for static bending of edge cracked micro beams, Structural Engineering and Mechanics, 2016, 59(3), 579-599.
  • 27. Civalek, Ö. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method, Composites Part B: Engineering, 2017, 111, 45-59.
  • 28. Shen, J.P.; Li, C. A. Semi-continuum-based bending analysis for extreme-thin micro/nano-beams and new proposal for nonlocal differential constitution, Composite Structures, 2017, 172, 210-220.
  • 29. Dehrouyeh-Semnani, A.M.; Mostafaei, H.; and Nikkhah-Bahrami, M. Free flexural vibration of geometrically imperfect functionally graded microbeams, International Journal of Engineering Science, 2016, 105, 56-79.
  • 30. Ghayesh, M.H.; Farokhi, H.; Amabili, M. Nonlinear dynamics of a microscale beam based on the modified couple stress theory, Composites: Part B, 2013a, 50, 318-324.
  • 31. Ghayesh, M.H.; Amabili, M.; Farokhi, H. Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory, International Journal of Engineering Science, 2013b, 63, 52-60.
  • 32. Wang, Y.G.; Lin, W.H.; Liu, N. Nonlinear free vibration of a microscale beam based on modified couple stress theory, Physica E, 2013, 47, 80-85.
  • 33. Xia, W.; Wang, L.; Yin, L. Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration, International Journal of Engineering Science, 2010, 48, 2044-2053.
  • 34. Şimşek, M. Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method, Composite Structures, 2014, 112, 264-272.
  • 35. Toupin, R.A. Theories of elasticity with couple stress, Archive for Rational Mechanics and Analysis, 1962, 17, 85–112.
  • 36. Mindlin, R.D.; Tiersten, H.F. Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 1962, 11, 415–448.
  • 37. Mindlin, R.D., Influence of couple-stresses on stress concentrations, Experimental Mechanics, 1964, 3, 1–7.
  • 38. Nayfeh, A.H., Mook, D.T. Nonlinear Oscillations; John Wiley, New York, 1979.
  • 39. Nayfeh, A.H. Introduction to Perturbation Techniques, John Wiley, New York, 1981.
  • 40. Barretta, R.; Luciano, R.; Willis, J.R. On torsion of random composite beams, Composite Structures, 2015, 132, 915-922
There are 39 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Necla Togun

Süleyman Murat Bağdatlı

Publication Date December 29, 2017
Published in Issue Year 2017

Cite

APA Togun, N., & Bağdatlı, S. M. (2017). Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(4), 893-899. https://doi.org/10.18466/cbayarfbe.370362
AMA Togun N, Bağdatlı SM. Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory. CBUJOS. December 2017;13(4):893-899. doi:10.18466/cbayarfbe.370362
Chicago Togun, Necla, and Süleyman Murat Bağdatlı. “Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13, no. 4 (December 2017): 893-99. https://doi.org/10.18466/cbayarfbe.370362.
EndNote Togun N, Bağdatlı SM (December 1, 2017) Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13 4 893–899.
IEEE N. Togun and S. M. Bağdatlı, “Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory”, CBUJOS, vol. 13, no. 4, pp. 893–899, 2017, doi: 10.18466/cbayarfbe.370362.
ISNAD Togun, Necla - Bağdatlı, Süleyman Murat. “Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13/4 (December 2017), 893-899. https://doi.org/10.18466/cbayarfbe.370362.
JAMA Togun N, Bağdatlı SM. Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory. CBUJOS. 2017;13:893–899.
MLA Togun, Necla and Süleyman Murat Bağdatlı. “Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 4, 2017, pp. 893-9, doi:10.18466/cbayarfbe.370362.
Vancouver Togun N, Bağdatlı SM. Investigation of the Size Effect in Euler-Bernoulli Nanobeam Using the Modified Couple Stress Theory. CBUJOS. 2017;13(4):893-9.