Research Article
BibTex RIS Cite

Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation

Year 2018, , 373 - 377, 28.12.2018
https://doi.org/10.18466/cbayarfbe.393700

Abstract

In
this study, we investigate nematic-isotropic phase transitions in liquid
crystals using fractionally generalized form of the Maier-Saupe Theory (MST).
MST is one of the mean-field theories commonly used in the nematic liquid
crystals which proved to be extremely useful in explaining nematic-isotropic
phase transitions. Fractionally obtained results compared with those of the
experimental data for p-azoxyanisole (PAA) in the literature. In this context,
the dependence of fourth rank order parameters on second rank order parameters
is handled by being a measure of fractality of space. It is observed that the
variation of second-rank and fourth rank order parameters versus temperature
are in accordance with some values of fractal dimensions. As a result, we can
conclude that there is a close relationship between temperature and fractional derivative
order parameters.

References

  • 1. Andrade, R,F, S, Remarks on the behavior of the ising chain in the generalized statistics, Physica A: Statistical Mechanics and its Applications, 1994, 203, 486-494.
  • 2. Ramshaw, J, D, Irreversibility and generalized entropies, Physics Letters A, 1993, 175 (3-4), 171.
  • 3. Ertik, H, Demirhan, D, Şirin, H, Büyükkılıc, F, A fractional mathematical approach to the distribution functions of quantum gases: Cosmic microwave background radiation problem is revisited, Physica A: Statistical Mechanics and its Applications, 2009, 388 (21), 4573-4585.
  • 4. Ertik, H, Demirhan, D, Şirin, H, Büyükkılıc, F, Time fractional development of quantum systems, Journal of Mathematical Physics, 2010, 51 (8), 082102.
  • 5. Ubriano, M, R, Entropies based on fractional calculus, Physics Letters A, 2009, 373, 2516-2519.
  • 6. Hamley, I, W, Garnett, S, Luckhurst, G, R, Roskilly, S, J, Sedon, J, M, Pedersen, S, Richardson, R, M, Orientational ordering in the nematic phase of a thermotropic liquid crystal: A small angle neutron scattering study, The Journal of Chemical Physics, 1996, 104, 10046.
  • 7. Tarasov, V, E, Fractional hydrodynamic equations for fractal media, Annals of Physics, 2005, 318:286-307.
  • 8. Tsallis, C, Mendes, R, S, Plastino, A, R, The role of contraints within generalized non extensive statistics, Physica A: Statistical Mechanics and its Applications, 1998, 261, 534-554.
  • 9. Metzler, R, Kalfter, J, The random walk’s guide to anomalous diffusion: a fractional approach, Physics Reports, 2000, 339:1-77.
  • 10. Biyajima, M, Mizoguchi, T, Suzuki, N, New blackbody radiation low based on fractional calculus and its application to nasa cobe data, Physica A, 2015, 440, 129-138.
  • 11. Gabano, J, D, Poinot, T, Kanoun, H, LPV Continuous fractional modeling applied to ultracapacitor impedance identification, Control Engineering Practice, 2015, 45, 86-97.
  • 12. Sun, H, Zhang, Y, Baleanu, D, Chen, W, Chen, Y, A new collection of real world applications of fractional calculus işn science and engineering, Commun Nonliear Sci Numer Simulat, 2018, 213-231.
  • 13. Hilfer, R, Applications of fractional calculus in physics, World Scientific, 2000, 463p.
  • 14. Oldham, K, B, Spainer, J, The fractional calculus, Academic Press, San Diego, 1974, pp 234. 15. Podlubny, I, Fractional differential equations, Academic Press: San Diego, 1999, pp 340.
  • 16. Saupe, A, Recent results in the field of liquid crystals, Angew. Chem. International Edittion, England, 1968, vol. 7, pp 97-112.
  • 17. Maier, W, Saupe, A, Naturforsch, Z, A simple molecular statistical theory of the nematic crystalline-liquid phase II, 1960, 15a, pp 287.
Year 2018, , 373 - 377, 28.12.2018
https://doi.org/10.18466/cbayarfbe.393700

Abstract

References

  • 1. Andrade, R,F, S, Remarks on the behavior of the ising chain in the generalized statistics, Physica A: Statistical Mechanics and its Applications, 1994, 203, 486-494.
  • 2. Ramshaw, J, D, Irreversibility and generalized entropies, Physics Letters A, 1993, 175 (3-4), 171.
  • 3. Ertik, H, Demirhan, D, Şirin, H, Büyükkılıc, F, A fractional mathematical approach to the distribution functions of quantum gases: Cosmic microwave background radiation problem is revisited, Physica A: Statistical Mechanics and its Applications, 2009, 388 (21), 4573-4585.
  • 4. Ertik, H, Demirhan, D, Şirin, H, Büyükkılıc, F, Time fractional development of quantum systems, Journal of Mathematical Physics, 2010, 51 (8), 082102.
  • 5. Ubriano, M, R, Entropies based on fractional calculus, Physics Letters A, 2009, 373, 2516-2519.
  • 6. Hamley, I, W, Garnett, S, Luckhurst, G, R, Roskilly, S, J, Sedon, J, M, Pedersen, S, Richardson, R, M, Orientational ordering in the nematic phase of a thermotropic liquid crystal: A small angle neutron scattering study, The Journal of Chemical Physics, 1996, 104, 10046.
  • 7. Tarasov, V, E, Fractional hydrodynamic equations for fractal media, Annals of Physics, 2005, 318:286-307.
  • 8. Tsallis, C, Mendes, R, S, Plastino, A, R, The role of contraints within generalized non extensive statistics, Physica A: Statistical Mechanics and its Applications, 1998, 261, 534-554.
  • 9. Metzler, R, Kalfter, J, The random walk’s guide to anomalous diffusion: a fractional approach, Physics Reports, 2000, 339:1-77.
  • 10. Biyajima, M, Mizoguchi, T, Suzuki, N, New blackbody radiation low based on fractional calculus and its application to nasa cobe data, Physica A, 2015, 440, 129-138.
  • 11. Gabano, J, D, Poinot, T, Kanoun, H, LPV Continuous fractional modeling applied to ultracapacitor impedance identification, Control Engineering Practice, 2015, 45, 86-97.
  • 12. Sun, H, Zhang, Y, Baleanu, D, Chen, W, Chen, Y, A new collection of real world applications of fractional calculus işn science and engineering, Commun Nonliear Sci Numer Simulat, 2018, 213-231.
  • 13. Hilfer, R, Applications of fractional calculus in physics, World Scientific, 2000, 463p.
  • 14. Oldham, K, B, Spainer, J, The fractional calculus, Academic Press, San Diego, 1974, pp 234. 15. Podlubny, I, Fractional differential equations, Academic Press: San Diego, 1999, pp 340.
  • 16. Saupe, A, Recent results in the field of liquid crystals, Angew. Chem. International Edittion, England, 1968, vol. 7, pp 97-112.
  • 17. Maier, W, Saupe, A, Naturforsch, Z, A simple molecular statistical theory of the nematic crystalline-liquid phase II, 1960, 15a, pp 287.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Müjde Durukan Gültepe 0000-0003-3401-3515

Zekai Tek 0000-0002-4985-3499

Publication Date December 28, 2018
Published in Issue Year 2018

Cite

APA Durukan Gültepe, M., & Tek, Z. (2018). Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(4), 373-377. https://doi.org/10.18466/cbayarfbe.393700
AMA Durukan Gültepe M, Tek Z. Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation. CBUJOS. December 2018;14(4):373-377. doi:10.18466/cbayarfbe.393700
Chicago Durukan Gültepe, Müjde, and Zekai Tek. “Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14, no. 4 (December 2018): 373-77. https://doi.org/10.18466/cbayarfbe.393700.
EndNote Durukan Gültepe M, Tek Z (December 1, 2018) Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 4 373–377.
IEEE M. Durukan Gültepe and Z. Tek, “Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation”, CBUJOS, vol. 14, no. 4, pp. 373–377, 2018, doi: 10.18466/cbayarfbe.393700.
ISNAD Durukan Gültepe, Müjde - Tek, Zekai. “Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14/4 (December 2018), 373-377. https://doi.org/10.18466/cbayarfbe.393700.
JAMA Durukan Gültepe M, Tek Z. Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation. CBUJOS. 2018;14:373–377.
MLA Durukan Gültepe, Müjde and Zekai Tek. “Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 4, 2018, pp. 373-7, doi:10.18466/cbayarfbe.393700.
Vancouver Durukan Gültepe M, Tek Z. Investigation of Phase Transitions in Nematic Liquid Crystals by Fractional Calculation. CBUJOS. 2018;14(4):373-7.