Research Article
BibTex RIS Cite
Year 2018, , 271 - 276, 30.09.2018
https://doi.org/10.18466/cbayarfbe.421575

Abstract

References

  • 1. Canbing L, Haiqing S, Yijia C, Jianhui W, Yonghong K, Yi T, Jing W, Comprehensive review of renewable energy curtailment and avoidance: A specific example in China, Renewable and Sustainable Energy Reviews, 2015, 41, 1067-1079.
  • 2. Ali, E.Ö, Yavuz K, Engin Ö, Tahsin A, The experimental design of solar heating thermoelectric generator with wind cooling chimney, Energy Conversion and Management, 2015, 98, 127-133.
  • 3. Zuryati D, Nandy P, Ral A.K, The utilization of heat pipe on cold surface of thermoelectric with low-temperature waste heat, Applied Mechanics and Materials, 2013, 302, 410-415.
  • 4. Michele, L.O, Emily W, Philip A, Parilla, Eric, S.T, Cheryl, E.K, Gerald, J.S, Samad, A. F, Bill, J.N, Andriy Z, Alan, A.G, Craig, S.T, Judy N, Matthew, H.G, Paul, F.N, Robert T, Lauryn, L.B, Allison G, David, S.G, A high-temperature, high-efficiency solar thermoelectric generator prototype, Energy Procedia, 2014, 49, 1460-1469.
  • 5. Xing N, Jianlin Y, Shuzhong W, Experimental study on low-temperature waste heat thermoelectric generator, Journal of Power Sources, 2009, 188(2), 621-626.
  • 6. David M.R, Thermoelectrics: an environmentally-friendly source of electrical power, Renewable Energy, 1999, 16 (1), 1251–1256.
  • 7. Ono, K, Suzuki, R.O, Thermoelectric power generation: converting low-grade heat into electricity, Journal of the Minerals, Metals & Materials Society, 1998, 50(5), 12–31.
  • 8. Samir B, Mauro B, Alessandro Z, Stefania S, High efficiency Thermo-Electric power generator, International Journal of Hydrogen Energy, 2012, 37(2), 1385-1398.
  • 9. TECTEG MFR, http://thermoelectricgenerator. com/wp-content/uploads/2014/04/SpecTEG1-12611-6.0Thermoelectric-generator1.pdf (Accessed 05.05.2018).
  • 10. Narong V, Jongjit H, Joseph K, Michel D, Design and analysis of solar thermoelectric power generation system, International Journal of Sustainable Energy, 2005, 23(3), 115–127.
  • 11. Perumal R, Narasimhan, K.R, Ruchi G, Development, design and performance analysis of a forced draft clean combustion cookstove powered by a thermo electric generator with multi-utility options, Energy, 2014, 69, 813-825.
  • 12. Kyeongsoon P, H. K. Hwang, Jang, W.S, Wonseon S, Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation, Energy, 2013, 54, 139-145.
  • 13. Gökhan K, Ali, E.Ö, İlyas E, Reviewing and designing pre-processing units for RBF networks: initial structure identification and coarse-tuning of free parameters, Neural Computing and Applications, 2013, 22, 1655-1666.
  • 14. Xiaobing K, Xiangjie L, Kwang, Y. L, Data-driven modelling of a doubly fed induction generator wind turbine system based on neural networks, IET Renewable Power Generation, 2014, 8(8), 849 – 857.
  • 15. Liu Y, Holmes P, Cohen J, A neural network model of the Eriksen task: reduction, analysis, and data fitting, Neural computation, 2008, 20(2), 345 – 373.
  • 16. Xue-Bin L, Jun W, A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints, IEEE Transactions on Neural Networks, 2000, 11(6), 1251 – 1262.
  • 17. Ravinder, K.K, S.L. Shimi, Shantanu C, Fahim A, Modeling of solar PV module and maximum power point tracking using ANFIS, Renewable and Sustainable Energy Reviews, 2014, 33, 602-612.
  • 18. Jang, J.S.R, ANFIS Adaptive-Network-Based Fuzzy Inference Systems, Man and Cybernetics, 1993, 23, 665-685.
  • 19. Jang,J.S.R, Mizutani, E, Levenberg-Marquardt method for ANFIS learning, Fuzzy Information Processing Society Biennial Conference of the North American, Berkeley, CA, 1996, pp 87 – 91.
  • 20. Shoorehdeli, M.A, Teshnehlab, M, Sedigh, A.K, Novel hybrid learning algorithms for tuning ANFIS parameters using adaptive weighted PSO, Fuzzy Systems Conference, London, UK, 2007, pp. 1 – 6.

Solar-Based Thermoelectric Generator and its ANFIS Model

Year 2018, , 271 - 276, 30.09.2018
https://doi.org/10.18466/cbayarfbe.421575

Abstract

In this work, it is
aimed to construct an Adaptive Neuro Fuzzy Inference System (ANFIS) model using
the experimental values of our previous work on solar heating with wind chimney
thermoelectric generator and to predict the generated open circuit voltage of
experimental system under variable conditions. The ANFIS model constructed
makes use of input parameters such as local radiation intensity on solar
collector tube (W), ambiance temperature oC and average wind
velocity in the chimney (m/s). Open circuit voltage (V) is denoted as output.
Selected experimental data sets are used in training and testing procedures to
accomplish the model required. Assessment of the outcomes of the study reveals
that the proposed modeling by ANFIS is consistent and validated by the
experimental results. Promising results show that ANFIS model can be used to
estimate the output parameter of solar-based generator (the open circuit
voltage) correctly and this result can use enhancing of presented system.  Employment of artificial neural networks on
renewable energy systems is a rather new area of study. Hence, continuing work
via neural network structures will be related to the optimization and
improvement of these generators for useful energy producing.

References

  • 1. Canbing L, Haiqing S, Yijia C, Jianhui W, Yonghong K, Yi T, Jing W, Comprehensive review of renewable energy curtailment and avoidance: A specific example in China, Renewable and Sustainable Energy Reviews, 2015, 41, 1067-1079.
  • 2. Ali, E.Ö, Yavuz K, Engin Ö, Tahsin A, The experimental design of solar heating thermoelectric generator with wind cooling chimney, Energy Conversion and Management, 2015, 98, 127-133.
  • 3. Zuryati D, Nandy P, Ral A.K, The utilization of heat pipe on cold surface of thermoelectric with low-temperature waste heat, Applied Mechanics and Materials, 2013, 302, 410-415.
  • 4. Michele, L.O, Emily W, Philip A, Parilla, Eric, S.T, Cheryl, E.K, Gerald, J.S, Samad, A. F, Bill, J.N, Andriy Z, Alan, A.G, Craig, S.T, Judy N, Matthew, H.G, Paul, F.N, Robert T, Lauryn, L.B, Allison G, David, S.G, A high-temperature, high-efficiency solar thermoelectric generator prototype, Energy Procedia, 2014, 49, 1460-1469.
  • 5. Xing N, Jianlin Y, Shuzhong W, Experimental study on low-temperature waste heat thermoelectric generator, Journal of Power Sources, 2009, 188(2), 621-626.
  • 6. David M.R, Thermoelectrics: an environmentally-friendly source of electrical power, Renewable Energy, 1999, 16 (1), 1251–1256.
  • 7. Ono, K, Suzuki, R.O, Thermoelectric power generation: converting low-grade heat into electricity, Journal of the Minerals, Metals & Materials Society, 1998, 50(5), 12–31.
  • 8. Samir B, Mauro B, Alessandro Z, Stefania S, High efficiency Thermo-Electric power generator, International Journal of Hydrogen Energy, 2012, 37(2), 1385-1398.
  • 9. TECTEG MFR, http://thermoelectricgenerator. com/wp-content/uploads/2014/04/SpecTEG1-12611-6.0Thermoelectric-generator1.pdf (Accessed 05.05.2018).
  • 10. Narong V, Jongjit H, Joseph K, Michel D, Design and analysis of solar thermoelectric power generation system, International Journal of Sustainable Energy, 2005, 23(3), 115–127.
  • 11. Perumal R, Narasimhan, K.R, Ruchi G, Development, design and performance analysis of a forced draft clean combustion cookstove powered by a thermo electric generator with multi-utility options, Energy, 2014, 69, 813-825.
  • 12. Kyeongsoon P, H. K. Hwang, Jang, W.S, Wonseon S, Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation, Energy, 2013, 54, 139-145.
  • 13. Gökhan K, Ali, E.Ö, İlyas E, Reviewing and designing pre-processing units for RBF networks: initial structure identification and coarse-tuning of free parameters, Neural Computing and Applications, 2013, 22, 1655-1666.
  • 14. Xiaobing K, Xiangjie L, Kwang, Y. L, Data-driven modelling of a doubly fed induction generator wind turbine system based on neural networks, IET Renewable Power Generation, 2014, 8(8), 849 – 857.
  • 15. Liu Y, Holmes P, Cohen J, A neural network model of the Eriksen task: reduction, analysis, and data fitting, Neural computation, 2008, 20(2), 345 – 373.
  • 16. Xue-Bin L, Jun W, A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints, IEEE Transactions on Neural Networks, 2000, 11(6), 1251 – 1262.
  • 17. Ravinder, K.K, S.L. Shimi, Shantanu C, Fahim A, Modeling of solar PV module and maximum power point tracking using ANFIS, Renewable and Sustainable Energy Reviews, 2014, 33, 602-612.
  • 18. Jang, J.S.R, ANFIS Adaptive-Network-Based Fuzzy Inference Systems, Man and Cybernetics, 1993, 23, 665-685.
  • 19. Jang,J.S.R, Mizutani, E, Levenberg-Marquardt method for ANFIS learning, Fuzzy Information Processing Society Biennial Conference of the North American, Berkeley, CA, 1996, pp 87 – 91.
  • 20. Shoorehdeli, M.A, Teshnehlab, M, Sedigh, A.K, Novel hybrid learning algorithms for tuning ANFIS parameters using adaptive weighted PSO, Fuzzy Systems Conference, London, UK, 2007, pp. 1 – 6.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Ekber Özdemir 0000-0002-4186-6244

Publication Date September 30, 2018
Published in Issue Year 2018

Cite

APA Özdemir, A. E. (2018). Solar-Based Thermoelectric Generator and its ANFIS Model. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(3), 271-276. https://doi.org/10.18466/cbayarfbe.421575
AMA Özdemir AE. Solar-Based Thermoelectric Generator and its ANFIS Model. CBUJOS. September 2018;14(3):271-276. doi:10.18466/cbayarfbe.421575
Chicago Özdemir, Ali Ekber. “Solar-Based Thermoelectric Generator and Its ANFIS Model”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14, no. 3 (September 2018): 271-76. https://doi.org/10.18466/cbayarfbe.421575.
EndNote Özdemir AE (September 1, 2018) Solar-Based Thermoelectric Generator and its ANFIS Model. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 3 271–276.
IEEE A. E. Özdemir, “Solar-Based Thermoelectric Generator and its ANFIS Model”, CBUJOS, vol. 14, no. 3, pp. 271–276, 2018, doi: 10.18466/cbayarfbe.421575.
ISNAD Özdemir, Ali Ekber. “Solar-Based Thermoelectric Generator and Its ANFIS Model”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14/3 (September 2018), 271-276. https://doi.org/10.18466/cbayarfbe.421575.
JAMA Özdemir AE. Solar-Based Thermoelectric Generator and its ANFIS Model. CBUJOS. 2018;14:271–276.
MLA Özdemir, Ali Ekber. “Solar-Based Thermoelectric Generator and Its ANFIS Model”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 3, 2018, pp. 271-6, doi:10.18466/cbayarfbe.421575.
Vancouver Özdemir AE. Solar-Based Thermoelectric Generator and its ANFIS Model. CBUJOS. 2018;14(3):271-6.