Research Article
BibTex RIS Cite
Year 2018, , 303 - 307, 30.09.2018
https://doi.org/10.18466/cbayarfbe.425013

Abstract

References

  • 1. Graham, L.E, Graham, J. M, Wilcox, L.W, Algae. San Francisco, Benjamin Cummings 2009.
  • 2. Kirst, G.O, Salinity tolerance of eukaryotic marine algae, Annual Reviews in Plant Physiology and Plant Molecular Biology,1989, 41, 21–53.
  • 3. Hemmingson, J.A, Furneaux, R.X, Murray-brown, V.H, Biosynthesis of agar polysaccharides in Gracilaria chilensis bird, McLachlan et Olivira. Carbohydrate Research, 1996, 287, 101-115.
  • 4. Imbs, A.B, Vologodskaya, A.V, Nevshupova, N.V, Khotimchenko, S.V, Titlyanoy, E. A, Response of prostaglandin content in the red alga Gracilaria verrucosa to season and solar irradiance, Phytochemistry, 2001, 58, 1067–1072.
  • 5. Provasoli, L, Media and prospects for the cultivation of marine algae: Cultures and collections of algae, Proceedings of the US-Japan Conference, Hakone, 1966, Japanese Society Plant Physiology, 1968, pp.63-75.
  • 6. Bradford, M, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Analytical Biochemistry, 1976, 72, 248-254.
  • 7. Beer, S, Eshel, A, Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Australian Journal of Marine and Freshwater Research, 1985, 36(6), 785 - 792.
  • 8. Meeks, J.C, Castenholz, R.W, Growth and photosynthesis in an extreme thermophile Synechococcus lividus (Cyanophyta), Archives fur Microbiologie, 1971, 78, 25-41.
  • 9. Maksimović J.J.D, Živanović B.D, Plant Salt Tolerance Methods in Molecular Biology (Methods and Protocols). In: Shabala S, Cuin T, (eds), Quantification of the Antioxidant Activity in Salt-Stressed Tissues, Totowa, NJ, Humana Press, 2012.
  • 10. Bhar, S, Chakraborty, D, Ram, S. S, Das, D, Chakraborty, A, Sudarshan M, Santa, S.C, Spatial variation of chlorophyll integrity in a mangrove plant (Excoecaria agallocha) of Indian Sundarban, with special reference to leaf element and water salinity, IOSR Journal Of Environmental Science, Toxicology And Food Technology, 2013, 3(5), 24-31.
  • 11. Çetin, M, Polysiphonia morrowii Harvey Türü Üzerine Tuzluluğun Etkileri, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, (yayınlanmamış) 2014, Bursa, Türkiye.
  • 12. Iyengar, E.R.R, Reddy, M.P, Photosynthesis in high salt-tolerant plants. Ed.: Pesserkali, M, Hand Book of Photosynthesis, Marshal Dekar, Baten Rose, USA, 1996, 56–65.
  • 13. Nelson, S. G, Tsutsui, R. N, Best, R.R, Evaluation of seaweed mariculture potential in Guam: I. Ammonia uptake by growth of two species of Gracilaria (Rhodophyta), University of Guam Marine Laboratory Technology Reports, 1980, 61, 1-20.
  • 14. Phooprong, S, Ogawa, H, Hayashizaki, K, Photosynthetic and respiratory responses of Gracilaria salicornia (C. Agardh) Dawson (Gracilariales, Rhodophyta) from Thailand and Japan, Japanese Journal of Applied Phycology, 2007, 19, 795-801.
  • 15. Kumar, M, Kumari, P, Gupta, V, Reddy, C, Jha, B, Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress, Journal of Experimental Marine Biology and Ecology, 2010, 391, 27–34.
  • 16. Israel, A, Martinez-Goss, M, Friedlander, M, Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation, Journal of Applied Phycology, 1999, 11, 543-549.
  • 17. Kim, J. K, Kraemer, G. P, Neefus, C. D, Chung, I. K, Yarish, C, Effect of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast, Journal of Applied Phycology, 2007, 19, 431-440.
  • 18. Macler, B.A, Salinity effects on photosynthesis, carbon allocation and nitrogen assimilation in the red alga Gelidium coulteri, Plant Physiology, 1988, 88, 690-694.
  • 19. Lu, C, Vonshak, A, Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells, Physiologia Plantarum, 2002, 114, 405-413.
  • 20. Khan, N.A, Na-Cl inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat, Biologia Plantarum, 2003, 47(3), 437-440.
  • 21. Gomes, M. C, Suzuki, M.S, Cunha, M, Tullii C.F, Effect of salt stress on nutrient concentration, photosynthetic pigments, proline and foliar morphology of Salvinia auriculara Aubl., Acta Limnologica Brasiliensia, 2011, 23(2), 164-176.
  • 22. Cano-Europa, E, Ortiz-Butrón, ., Gallardo-Casas, C.A, Blas-Valdivia, V, Pineda- Reynoso, M, Olvera-Ramírez, R, Franco-Colin, M, Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2 caused oxidative stress and cellular damage in the kidney, Journal of Applied Phycology, 2010, 22, 495–501.

The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria gracilis Greville (Rhodophyta)

Year 2018, , 303 - 307, 30.09.2018
https://doi.org/10.18466/cbayarfbe.425013

Abstract

It has been known that,
climate change causes changes in marine water salinity. Since salinity is one
of the major factors on osmoregulation and ion concentration of algae, marine
algal community will be effected by salinity changes.
Gracilaria gracilis samples were collected from Izmir Bay on
December 2014. After 2 days adjustment period in the laboratory conditions, the
algae samples were divided into 4 groups and each group were cultured in
different salinity concentrations (10‰, 25‰, 37‰ control group, 48‰) for 7
days. On Day 0, 2, 5 and 7, small pieces of samples collected from each group
afterwards total protein, phycocyanin, phycoerythrin and chlorophyll a
integrity and catalase activity were analyzed. Phycocyanin, phycoerythrin and
chlorophyll a levels and catalase activity showed variations according to
exposure time and salinity concentrations. Except for the catalase activity,
all the parameters were decreased by the end of the 7th day at different
salinities. The highest catalase activity was observed on the last day of the
experiment in all groups which shows the salinity stress increasement according
to exposure time.
Gracilaria gracilis
was not able to adapt both hiposalinity and hypersalinity conditions.

References

  • 1. Graham, L.E, Graham, J. M, Wilcox, L.W, Algae. San Francisco, Benjamin Cummings 2009.
  • 2. Kirst, G.O, Salinity tolerance of eukaryotic marine algae, Annual Reviews in Plant Physiology and Plant Molecular Biology,1989, 41, 21–53.
  • 3. Hemmingson, J.A, Furneaux, R.X, Murray-brown, V.H, Biosynthesis of agar polysaccharides in Gracilaria chilensis bird, McLachlan et Olivira. Carbohydrate Research, 1996, 287, 101-115.
  • 4. Imbs, A.B, Vologodskaya, A.V, Nevshupova, N.V, Khotimchenko, S.V, Titlyanoy, E. A, Response of prostaglandin content in the red alga Gracilaria verrucosa to season and solar irradiance, Phytochemistry, 2001, 58, 1067–1072.
  • 5. Provasoli, L, Media and prospects for the cultivation of marine algae: Cultures and collections of algae, Proceedings of the US-Japan Conference, Hakone, 1966, Japanese Society Plant Physiology, 1968, pp.63-75.
  • 6. Bradford, M, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Analytical Biochemistry, 1976, 72, 248-254.
  • 7. Beer, S, Eshel, A, Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Australian Journal of Marine and Freshwater Research, 1985, 36(6), 785 - 792.
  • 8. Meeks, J.C, Castenholz, R.W, Growth and photosynthesis in an extreme thermophile Synechococcus lividus (Cyanophyta), Archives fur Microbiologie, 1971, 78, 25-41.
  • 9. Maksimović J.J.D, Živanović B.D, Plant Salt Tolerance Methods in Molecular Biology (Methods and Protocols). In: Shabala S, Cuin T, (eds), Quantification of the Antioxidant Activity in Salt-Stressed Tissues, Totowa, NJ, Humana Press, 2012.
  • 10. Bhar, S, Chakraborty, D, Ram, S. S, Das, D, Chakraborty, A, Sudarshan M, Santa, S.C, Spatial variation of chlorophyll integrity in a mangrove plant (Excoecaria agallocha) of Indian Sundarban, with special reference to leaf element and water salinity, IOSR Journal Of Environmental Science, Toxicology And Food Technology, 2013, 3(5), 24-31.
  • 11. Çetin, M, Polysiphonia morrowii Harvey Türü Üzerine Tuzluluğun Etkileri, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, (yayınlanmamış) 2014, Bursa, Türkiye.
  • 12. Iyengar, E.R.R, Reddy, M.P, Photosynthesis in high salt-tolerant plants. Ed.: Pesserkali, M, Hand Book of Photosynthesis, Marshal Dekar, Baten Rose, USA, 1996, 56–65.
  • 13. Nelson, S. G, Tsutsui, R. N, Best, R.R, Evaluation of seaweed mariculture potential in Guam: I. Ammonia uptake by growth of two species of Gracilaria (Rhodophyta), University of Guam Marine Laboratory Technology Reports, 1980, 61, 1-20.
  • 14. Phooprong, S, Ogawa, H, Hayashizaki, K, Photosynthetic and respiratory responses of Gracilaria salicornia (C. Agardh) Dawson (Gracilariales, Rhodophyta) from Thailand and Japan, Japanese Journal of Applied Phycology, 2007, 19, 795-801.
  • 15. Kumar, M, Kumari, P, Gupta, V, Reddy, C, Jha, B, Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress, Journal of Experimental Marine Biology and Ecology, 2010, 391, 27–34.
  • 16. Israel, A, Martinez-Goss, M, Friedlander, M, Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation, Journal of Applied Phycology, 1999, 11, 543-549.
  • 17. Kim, J. K, Kraemer, G. P, Neefus, C. D, Chung, I. K, Yarish, C, Effect of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast, Journal of Applied Phycology, 2007, 19, 431-440.
  • 18. Macler, B.A, Salinity effects on photosynthesis, carbon allocation and nitrogen assimilation in the red alga Gelidium coulteri, Plant Physiology, 1988, 88, 690-694.
  • 19. Lu, C, Vonshak, A, Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells, Physiologia Plantarum, 2002, 114, 405-413.
  • 20. Khan, N.A, Na-Cl inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat, Biologia Plantarum, 2003, 47(3), 437-440.
  • 21. Gomes, M. C, Suzuki, M.S, Cunha, M, Tullii C.F, Effect of salt stress on nutrient concentration, photosynthetic pigments, proline and foliar morphology of Salvinia auriculara Aubl., Acta Limnologica Brasiliensia, 2011, 23(2), 164-176.
  • 22. Cano-Europa, E, Ortiz-Butrón, ., Gallardo-Casas, C.A, Blas-Valdivia, V, Pineda- Reynoso, M, Olvera-Ramírez, R, Franco-Colin, M, Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2 caused oxidative stress and cellular damage in the kidney, Journal of Applied Phycology, 2010, 22, 495–501.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mihriban Özen 0000-0003-2088-2314

Ayşegül Kozak This is me 0000-0003-2110-7723

Şükran Dere 0000-0002-6780-1270

İnci Tüney Kızılkaya 0000-0003-0293-6964

Publication Date September 30, 2018
Published in Issue Year 2018

Cite

APA Özen, M., Kozak, A., Dere, Ş., Tüney Kızılkaya, İ. (2018). The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria gracilis Greville (Rhodophyta). Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(3), 303-307. https://doi.org/10.18466/cbayarfbe.425013
AMA Özen M, Kozak A, Dere Ş, Tüney Kızılkaya İ. The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria gracilis Greville (Rhodophyta). CBUJOS. September 2018;14(3):303-307. doi:10.18466/cbayarfbe.425013
Chicago Özen, Mihriban, Ayşegül Kozak, Şükran Dere, and İnci Tüney Kızılkaya. “The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria Gracilis Greville (Rhodophyta)”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14, no. 3 (September 2018): 303-7. https://doi.org/10.18466/cbayarfbe.425013.
EndNote Özen M, Kozak A, Dere Ş, Tüney Kızılkaya İ (September 1, 2018) The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria gracilis Greville (Rhodophyta). Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 3 303–307.
IEEE M. Özen, A. Kozak, Ş. Dere, and İ. Tüney Kızılkaya, “The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria gracilis Greville (Rhodophyta)”, CBUJOS, vol. 14, no. 3, pp. 303–307, 2018, doi: 10.18466/cbayarfbe.425013.
ISNAD Özen, Mihriban et al. “The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria Gracilis Greville (Rhodophyta)”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14/3 (September 2018), 303-307. https://doi.org/10.18466/cbayarfbe.425013.
JAMA Özen M, Kozak A, Dere Ş, Tüney Kızılkaya İ. The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria gracilis Greville (Rhodophyta). CBUJOS. 2018;14:303–307.
MLA Özen, Mihriban et al. “The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria Gracilis Greville (Rhodophyta)”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 3, 2018, pp. 303-7, doi:10.18466/cbayarfbe.425013.
Vancouver Özen M, Kozak A, Dere Ş, Tüney Kızılkaya İ. The Effects of Different Salt Concentrations on the Biochemical Contents of Gracilaria gracilis Greville (Rhodophyta). CBUJOS. 2018;14(3):303-7.