Research Article
BibTex RIS Cite

Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality

Year 2018, , 429 - 433, 28.12.2018
https://doi.org/10.18466/cbayarfbe.448934

Abstract

In this paper, SeibergWittenlike equations without selfduality are defined on dimensional manifolds. Then, nontrivial and flat solutions are given to them on . Finally, on realdimensional Kähler manifolds a global solution to these equation is
obtained for a given negative and constant scalar curvature.

References

  • Bilge, A.H, Dereli, T, Koçak, Ş, Monopole equations on 8-manifolds with Spin(7) holonomy, Communications in Mathematical Physics, 1999, 203(1), 21-30.
  • Değirmenci, N, Özdemir, N, Seiberg-Witten like equations on 8-dimensionalmanifolds with structure group Spin(7), Journal of Dynamical System and Geometric Theories, 2009, 7(1), 21-39.
  • Donaldson, S.K, Seiberg-Witten equations and 4-manifold topology, Bulletin of the American Mathematical Society, 1996, 33, 45-70.
  • Friedrich, T, Dirac operators in Riemannian geometry; Grauate Studies in Mathematics 25, American Mathematical Society, 2000; pp 211.
  • Karapazar, Ş, Seiberg-Witten equations on 8-dimensional SU(4)-structure, International Journal of Geometric Methods in Modern Physics, 2013, 10(3), 1220032.
  • Morgan, J, Seiberg-Witten Equations and Applications to the topology of Smooth Manifolds; Princeton University Press, 1996; pp 130.
  • Naber, G.L, Topology, geometry, and gauge fields; New York: Springer-Verlag, 1996; pp 437.
  • Salamon, D, Spin geometry and Seiberg-Witten invariants. Zürich: ETH, 1995; pp 599.
  • Witten, E, Monopoles and four manifolds, 1994, Mathematical Research Letters, 1994, 1, 769-796.
Year 2018, , 429 - 433, 28.12.2018
https://doi.org/10.18466/cbayarfbe.448934

Abstract

References

  • Bilge, A.H, Dereli, T, Koçak, Ş, Monopole equations on 8-manifolds with Spin(7) holonomy, Communications in Mathematical Physics, 1999, 203(1), 21-30.
  • Değirmenci, N, Özdemir, N, Seiberg-Witten like equations on 8-dimensionalmanifolds with structure group Spin(7), Journal of Dynamical System and Geometric Theories, 2009, 7(1), 21-39.
  • Donaldson, S.K, Seiberg-Witten equations and 4-manifold topology, Bulletin of the American Mathematical Society, 1996, 33, 45-70.
  • Friedrich, T, Dirac operators in Riemannian geometry; Grauate Studies in Mathematics 25, American Mathematical Society, 2000; pp 211.
  • Karapazar, Ş, Seiberg-Witten equations on 8-dimensional SU(4)-structure, International Journal of Geometric Methods in Modern Physics, 2013, 10(3), 1220032.
  • Morgan, J, Seiberg-Witten Equations and Applications to the topology of Smooth Manifolds; Princeton University Press, 1996; pp 130.
  • Naber, G.L, Topology, geometry, and gauge fields; New York: Springer-Verlag, 1996; pp 437.
  • Salamon, D, Spin geometry and Seiberg-Witten invariants. Zürich: ETH, 1995; pp 599.
  • Witten, E, Monopoles and four manifolds, 1994, Mathematical Research Letters, 1994, 1, 769-796.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serhan Eker

Publication Date December 28, 2018
Published in Issue Year 2018

Cite

APA Eker, S. (2018). Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(4), 429-433. https://doi.org/10.18466/cbayarfbe.448934
AMA Eker S. Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. CBUJOS. December 2018;14(4):429-433. doi:10.18466/cbayarfbe.448934
Chicago Eker, Serhan. “Seiberg-Witten-Like Equations on 8-Manifolds Without Self-Duality”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14, no. 4 (December 2018): 429-33. https://doi.org/10.18466/cbayarfbe.448934.
EndNote Eker S (December 1, 2018) Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 4 429–433.
IEEE S. Eker, “Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality”, CBUJOS, vol. 14, no. 4, pp. 429–433, 2018, doi: 10.18466/cbayarfbe.448934.
ISNAD Eker, Serhan. “Seiberg-Witten-Like Equations on 8-Manifolds Without Self-Duality”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14/4 (December 2018), 429-433. https://doi.org/10.18466/cbayarfbe.448934.
JAMA Eker S. Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. CBUJOS. 2018;14:429–433.
MLA Eker, Serhan. “Seiberg-Witten-Like Equations on 8-Manifolds Without Self-Duality”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 4, 2018, pp. 429-33, doi:10.18466/cbayarfbe.448934.
Vancouver Eker S. Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. CBUJOS. 2018;14(4):429-33.