Research Article
BibTex RIS Cite
Year 2019, , 71 - 74, 22.03.2019
https://doi.org/10.18466/cbayarfbe.465379

Abstract

References

  • 1. Vesalago, VG. 1968. The electrodynamics of substances with simultaneously negative values of є and µ. Soviet Physics Uspekhi; 10: 509-514.
  • 2. Pendry, JB. 2000. Negative refraction makes a perfect lens. Physical Review Letters; 85: 3966–3969.
  • 3. Shafique, MF, Qamar, Z, Riaz, L, Saleem, R, Khan, S. 2015. Coupling suppression in densely packed microstrip arrays using metamaterial structure. Microwave and Optical Technology Letters; 57: 759-763.
  • 4. Amanatiadis, S, Karamanos, T, Kantartzis, N. 2017. Radiation efficiency enhancement of graphene THz antennas utilizing metamaterial substrates. IEEE Antennas and Wireless Propagation Letters; 16: 2054-2057.
  • 5. Dadgarpour, A, Zarghooni, B, Virdee, BS, Denidni, TA. 2015. Millimeter-wave high-gain SIW end-fire bow-tie antenna. IEEE Transactions on Antennas and Propagation; 63(5): 2337-2342.
  • 6. Xiong, H, Hong, J, Tan, M, Li, B. 2013. Compact microstrip antenna with metamaterial for wideband applications. Turkish Journal of Electrical Engineering and Computer Sciences; 21: 2233-2238.
  • 7. Adel, BA, Ahmed, A. 2016. Metamaterial enhances microstrip antenna gain. Microwaves &RF; 7: 46-50.
  • 8. Li, D, Szabó, Z, Qing, X, Li, EP, Chen, ZN. 2012. A high gain antenna with an optimized metamaterial inspired superstrate. IEEE transactions on antennas and propagation; 60(12): 6018-6023.
  • 9. Balanis, CA. Antenna Theory: Analysis and Design; John Wiley and Sons Press: USA, 1997; pp. 818.
  • 10. Ramesh, M, Yip, KB. 2003. Design formula for inset fed microstrip patch antenna. Journal of Microwaves and Optoelectronics; 3: 5–10.
  • 11. İmeci, ST. 2015. E- and H-Shaped High Gain Patch Antennas. Microwave and Optical Technology Letters; 57: 1395-1401.
  • 12. Chen, X, Grzegorcezyk, TM, Wu, BI, Pacheco, J, Kong, JA. 20004. Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E; 70: 1-7.
  • 13. Wu, BI, Wang, W, Pacheco, J, Chen, X, Grzegorczyk, TM, Kong, JA. 2005. A study of using metamaterials as antenna substrate to enhance gain. Progress In Electromagnetics Research; 51: 295-328.
  • 14. Çakır, M, Koçkal, NU, Özen, Ş, Kocakuşak, A, Helhel, S. 2017. Investigation of electromagnetic shielding and absorbing capabilities of cementitious composites with waste metallic chips. Journal of Microwave Power and Electromagnetic Energy; 51: 31-42.
  • 15. Bayındır, M, Aydın, K, Özbay, E, Markos, P, Soukoulis, M. 2002. Transmission properties of composite metamaterials in free space. Applied Physics Letters; 81: 120-122.

LHM Superstrate for High Directivity Microstrip Antenna

Year 2019, , 71 - 74, 22.03.2019
https://doi.org/10.18466/cbayarfbe.465379

Abstract

High antenna directivity is generally desirable for wireless
communication systems, whether terrestrial or based on satellites. Most of the
solutions proposed for improvement of the directivity of microstrip patch
antennas were to design array of several antennas. The particular disadvantage
of this method comes from the feeding of each antenna and also from the
coupling between each element. A suitable model to eliminate these two
disadvantages is to use a separate superstrate structure. For this purpose a
Left-Handed medium (LHM) superstrate used and presented in this study. Both the
reference antenna and proposed antenna are simulated, fabricated, and tested.
The simulation results show good agreement with the measurement results. It is
observed that the reference antenna directivity increased by 1.72 dB with the
proposed LHM superstrate according to the measurement results for 12 GHz
operating frequency

References

  • 1. Vesalago, VG. 1968. The electrodynamics of substances with simultaneously negative values of є and µ. Soviet Physics Uspekhi; 10: 509-514.
  • 2. Pendry, JB. 2000. Negative refraction makes a perfect lens. Physical Review Letters; 85: 3966–3969.
  • 3. Shafique, MF, Qamar, Z, Riaz, L, Saleem, R, Khan, S. 2015. Coupling suppression in densely packed microstrip arrays using metamaterial structure. Microwave and Optical Technology Letters; 57: 759-763.
  • 4. Amanatiadis, S, Karamanos, T, Kantartzis, N. 2017. Radiation efficiency enhancement of graphene THz antennas utilizing metamaterial substrates. IEEE Antennas and Wireless Propagation Letters; 16: 2054-2057.
  • 5. Dadgarpour, A, Zarghooni, B, Virdee, BS, Denidni, TA. 2015. Millimeter-wave high-gain SIW end-fire bow-tie antenna. IEEE Transactions on Antennas and Propagation; 63(5): 2337-2342.
  • 6. Xiong, H, Hong, J, Tan, M, Li, B. 2013. Compact microstrip antenna with metamaterial for wideband applications. Turkish Journal of Electrical Engineering and Computer Sciences; 21: 2233-2238.
  • 7. Adel, BA, Ahmed, A. 2016. Metamaterial enhances microstrip antenna gain. Microwaves &RF; 7: 46-50.
  • 8. Li, D, Szabó, Z, Qing, X, Li, EP, Chen, ZN. 2012. A high gain antenna with an optimized metamaterial inspired superstrate. IEEE transactions on antennas and propagation; 60(12): 6018-6023.
  • 9. Balanis, CA. Antenna Theory: Analysis and Design; John Wiley and Sons Press: USA, 1997; pp. 818.
  • 10. Ramesh, M, Yip, KB. 2003. Design formula for inset fed microstrip patch antenna. Journal of Microwaves and Optoelectronics; 3: 5–10.
  • 11. İmeci, ST. 2015. E- and H-Shaped High Gain Patch Antennas. Microwave and Optical Technology Letters; 57: 1395-1401.
  • 12. Chen, X, Grzegorcezyk, TM, Wu, BI, Pacheco, J, Kong, JA. 20004. Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E; 70: 1-7.
  • 13. Wu, BI, Wang, W, Pacheco, J, Chen, X, Grzegorczyk, TM, Kong, JA. 2005. A study of using metamaterials as antenna substrate to enhance gain. Progress In Electromagnetics Research; 51: 295-328.
  • 14. Çakır, M, Koçkal, NU, Özen, Ş, Kocakuşak, A, Helhel, S. 2017. Investigation of electromagnetic shielding and absorbing capabilities of cementitious composites with waste metallic chips. Journal of Microwave Power and Electromagnetic Energy; 51: 31-42.
  • 15. Bayındır, M, Aydın, K, Özbay, E, Markos, P, Soukoulis, M. 2002. Transmission properties of composite metamaterials in free space. Applied Physics Letters; 81: 120-122.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bilal Tütüncü 0000-0002-7439-268X

Bülent Urul This is me 0000-0003-2656-2450

Publication Date March 22, 2019
Published in Issue Year 2019

Cite

APA Tütüncü, B., & Urul, B. (2019). LHM Superstrate for High Directivity Microstrip Antenna. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(1), 71-74. https://doi.org/10.18466/cbayarfbe.465379
AMA Tütüncü B, Urul B. LHM Superstrate for High Directivity Microstrip Antenna. CBUJOS. March 2019;15(1):71-74. doi:10.18466/cbayarfbe.465379
Chicago Tütüncü, Bilal, and Bülent Urul. “LHM Superstrate for High Directivity Microstrip Antenna”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15, no. 1 (March 2019): 71-74. https://doi.org/10.18466/cbayarfbe.465379.
EndNote Tütüncü B, Urul B (March 1, 2019) LHM Superstrate for High Directivity Microstrip Antenna. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15 1 71–74.
IEEE B. Tütüncü and B. Urul, “LHM Superstrate for High Directivity Microstrip Antenna”, CBUJOS, vol. 15, no. 1, pp. 71–74, 2019, doi: 10.18466/cbayarfbe.465379.
ISNAD Tütüncü, Bilal - Urul, Bülent. “LHM Superstrate for High Directivity Microstrip Antenna”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15/1 (March 2019), 71-74. https://doi.org/10.18466/cbayarfbe.465379.
JAMA Tütüncü B, Urul B. LHM Superstrate for High Directivity Microstrip Antenna. CBUJOS. 2019;15:71–74.
MLA Tütüncü, Bilal and Bülent Urul. “LHM Superstrate for High Directivity Microstrip Antenna”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 15, no. 1, 2019, pp. 71-74, doi:10.18466/cbayarfbe.465379.
Vancouver Tütüncü B, Urul B. LHM Superstrate for High Directivity Microstrip Antenna. CBUJOS. 2019;15(1):71-4.