Research Article
BibTex RIS Cite
Year 2019, , 221 - 226, 30.06.2019
https://doi.org/10.18466/cbayarfbe.533466

Abstract

References

  • 1. Fujiwara, TO, Hagan, D. 2014. Successful fluorine-containing herbicide agrochemicals. Journal of Fluorine Chemistry; 167: 16-29.
  • 2. Koschnick, TJ, Netherland, MD, Haller, WT. 2007. Effects of three als-inhibitors on five emergent native plant species in Florida. Journal of Aquatic Plant Management; 45: 47–51.
  • 3. Jabusch, TW, Tjeerdema, RS. 2005. Partitioning of penoxsulam, a new sulfonamide herbicide. Journal of Agrıcultural and Food Chemistry; 53(18): 7179-7183.
  • 4. Patetsini, E, Dimitriadis, VK, Kaloyianni, M. 2013. Biomarkers in marine mussels, Mytilus galloprovincialis, exposed to environmentally relevant levels of the pesticides, chlorpyrifos and penoxsulam. Aquatic Toxicology; 126: 338-345.
  • 5. Leme, DM, Marin-Morales, MA. 2009. Allium cepa test in environmental monitoring: a review on its application. Mutation Research-Reviews in Mutation Research; 682(1): 71-81.
  • 6. Liman, R, Cigerci, IH, Akyil, D, Eren, Y. 2011. Konuk M. Determination of genotoxicity of fenaminosulf by allium and comet tests. Pesticide Biochemistry and Physiology; 99, 61–64. 7. Fiskesjö, G. 1988. The allium test-an alternative in environmental studies: the relative toxicity of metal ions. Mutation Research; 197: 243–260.
  • 8. Rank, J, Nielsen, MH. 1994. Evaluation of the allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutation Research-Environmental Mutagenesis and Related Subjects; 312(1): 17-24.
  • 9. Saxena, PN, Chauhan, LKS, Gupta, SK. 2005. Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: spectroscopic basis of chromosome damage. Toxicology; 216(2-3): 244-252.
  • 10. Tice, RR, Agurell, E, Anderson, D, Burlinson, B, Hartman, A, Kobayashi, H, Sasaki, YF. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis; 35(3): 206-221.
  • 11. Koçyiğit, A, Keles, H, Selek, S, Guzel, S, Celik, H, Erel, O. 2005. Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis. Mutation Research; 585: 71–78.
  • 12. Concenço, G, Lopes, NF, Moraes, DM, Andres, A, Melo, PTBS. 2006. Rice seedling and plant development as affected by increasing rates of penoxsulam under controlled environments. Planta Daninha; 24(1): 131-139.
  • 13. Raj, SK, Syriac, EK, Geetha, D. 2018. Non-target effect of herbicide mixtures on the mycelial growth of Rhizoctonia solani kuhn. Japanese Journal of Tropical Agriculture; 55(2): 214-219.
  • 14. Silveira, MAD, Ribeiro DL, De Castro Marcondes, JP, D’arce, LPG. 2016. Sulfentrazone and flumetsulam herbicides caused DNA damage and instability in Allium cepa test. International Journal of Education and Applied Research; 2(8): 1-7.
  • 15. Soliman, MI, Ghoneam, GT. 2004. The mutagenic potentialities of some herbicides using Vicia faba as a biological system. Biotechnology Journal; 3: 140–154.
  • 16. Rangaswamy, V, Shanthamurthy, KB, Arekal, GD. 1979. Cytological effects of industrial effluent on somatic cells of Allium cepa. Cytologia; 44: 921-926.
  • 17. Billington, R, Gehen, SC, Hanley, TR. Toxicology of Triazolopyrimidine Herbicides. In: Robert K (ed) Hayes' Handbook of Pesticide Toxicolog, 3rd edn. Academic Press, United States, 2010, pp 1865-1885.
  • 18. Costa, R, Pereira, JL, Santos, MA, Pacheco, M, Guilherme, S. 2018. The role of contamination history and gender on the genotoxic responses of the crayfish Procambarus clarkii to a penoxsulam-based herbicide. Ecotoxicology; 27(7): 908-918.
  • 19. Nohatto, MA, Agostinetto, D, Langaro, AC, Oliveira, CD, Ruchel, Q. 2016. Antioxidant activity of rice plants sprayed with herbicides. Pesquisa Agropecuária Tropical; 46(1): 28-34.
  • 20. Galal, AA, Reda, RM, Mohamed, AAR. 2018. Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide. Fish and Shellfish Immunology; 77: 445-456.

Cytotoxicity and Genotoxicity in Allium cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam

Year 2019, , 221 - 226, 30.06.2019
https://doi.org/10.18466/cbayarfbe.533466

Abstract

Penoxsulam is a new sulfonamide herbicide used on rice crops for annual
grasses, broadleaf weeds, and sedges control, either grown through
transplanting or direct dry or direct seeding methods of planting. In this
study,
Allium cepa ana-telophase and
comet assay were used to examine the cyto-genotoxic effects of herbicide
penoxsulam on
A. cepa roots. A. cepa bulbs were exposed to ½xEC50
(12.5 µg/L), EC50 (25 µg/L) and 2xEC50 (50 µg/L) concentrations of penoxsulam for
24, 48, 72 and 96 h. Distilled water and 10 ppm of methyl methanesulfonate (MMS)
were used as negative and positive control groups, respectively. Penoxsulam
showed a cytotoxic effect by reducing root growth and mitotic index (MI), a
genotoxic effect because it statistically increased chromosome aberrations
(CAs, anaphase bridge, chromosomal laggards, polyploidy, disturbed ana-telophase
and stickiness) and DNA damage as compared to control. Liquid
chromatography-tandem mass spectrometry (LC-MS/MS) was also used for
quantitative analysis of penoxsulam in
A.
cepa
root meristem cells. Further molecular toxicological evaluations
associated in the cyto-genotoxicity of penoxsulam on plants are needed to
confirm these results

References

  • 1. Fujiwara, TO, Hagan, D. 2014. Successful fluorine-containing herbicide agrochemicals. Journal of Fluorine Chemistry; 167: 16-29.
  • 2. Koschnick, TJ, Netherland, MD, Haller, WT. 2007. Effects of three als-inhibitors on five emergent native plant species in Florida. Journal of Aquatic Plant Management; 45: 47–51.
  • 3. Jabusch, TW, Tjeerdema, RS. 2005. Partitioning of penoxsulam, a new sulfonamide herbicide. Journal of Agrıcultural and Food Chemistry; 53(18): 7179-7183.
  • 4. Patetsini, E, Dimitriadis, VK, Kaloyianni, M. 2013. Biomarkers in marine mussels, Mytilus galloprovincialis, exposed to environmentally relevant levels of the pesticides, chlorpyrifos and penoxsulam. Aquatic Toxicology; 126: 338-345.
  • 5. Leme, DM, Marin-Morales, MA. 2009. Allium cepa test in environmental monitoring: a review on its application. Mutation Research-Reviews in Mutation Research; 682(1): 71-81.
  • 6. Liman, R, Cigerci, IH, Akyil, D, Eren, Y. 2011. Konuk M. Determination of genotoxicity of fenaminosulf by allium and comet tests. Pesticide Biochemistry and Physiology; 99, 61–64. 7. Fiskesjö, G. 1988. The allium test-an alternative in environmental studies: the relative toxicity of metal ions. Mutation Research; 197: 243–260.
  • 8. Rank, J, Nielsen, MH. 1994. Evaluation of the allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutation Research-Environmental Mutagenesis and Related Subjects; 312(1): 17-24.
  • 9. Saxena, PN, Chauhan, LKS, Gupta, SK. 2005. Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: spectroscopic basis of chromosome damage. Toxicology; 216(2-3): 244-252.
  • 10. Tice, RR, Agurell, E, Anderson, D, Burlinson, B, Hartman, A, Kobayashi, H, Sasaki, YF. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis; 35(3): 206-221.
  • 11. Koçyiğit, A, Keles, H, Selek, S, Guzel, S, Celik, H, Erel, O. 2005. Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis. Mutation Research; 585: 71–78.
  • 12. Concenço, G, Lopes, NF, Moraes, DM, Andres, A, Melo, PTBS. 2006. Rice seedling and plant development as affected by increasing rates of penoxsulam under controlled environments. Planta Daninha; 24(1): 131-139.
  • 13. Raj, SK, Syriac, EK, Geetha, D. 2018. Non-target effect of herbicide mixtures on the mycelial growth of Rhizoctonia solani kuhn. Japanese Journal of Tropical Agriculture; 55(2): 214-219.
  • 14. Silveira, MAD, Ribeiro DL, De Castro Marcondes, JP, D’arce, LPG. 2016. Sulfentrazone and flumetsulam herbicides caused DNA damage and instability in Allium cepa test. International Journal of Education and Applied Research; 2(8): 1-7.
  • 15. Soliman, MI, Ghoneam, GT. 2004. The mutagenic potentialities of some herbicides using Vicia faba as a biological system. Biotechnology Journal; 3: 140–154.
  • 16. Rangaswamy, V, Shanthamurthy, KB, Arekal, GD. 1979. Cytological effects of industrial effluent on somatic cells of Allium cepa. Cytologia; 44: 921-926.
  • 17. Billington, R, Gehen, SC, Hanley, TR. Toxicology of Triazolopyrimidine Herbicides. In: Robert K (ed) Hayes' Handbook of Pesticide Toxicolog, 3rd edn. Academic Press, United States, 2010, pp 1865-1885.
  • 18. Costa, R, Pereira, JL, Santos, MA, Pacheco, M, Guilherme, S. 2018. The role of contamination history and gender on the genotoxic responses of the crayfish Procambarus clarkii to a penoxsulam-based herbicide. Ecotoxicology; 27(7): 908-918.
  • 19. Nohatto, MA, Agostinetto, D, Langaro, AC, Oliveira, CD, Ruchel, Q. 2016. Antioxidant activity of rice plants sprayed with herbicides. Pesquisa Agropecuária Tropical; 46(1): 28-34.
  • 20. Galal, AA, Reda, RM, Mohamed, AAR. 2018. Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide. Fish and Shellfish Immunology; 77: 445-456.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Recep Liman

Seçil Özkan

Publication Date June 30, 2019
Published in Issue Year 2019

Cite

APA Liman, R., & Özkan, S. (2019). Cytotoxicity and Genotoxicity in Allium cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(2), 221-226. https://doi.org/10.18466/cbayarfbe.533466
AMA Liman R, Özkan S. Cytotoxicity and Genotoxicity in Allium cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam. CBUJOS. June 2019;15(2):221-226. doi:10.18466/cbayarfbe.533466
Chicago Liman, Recep, and Seçil Özkan. “Cytotoxicity and Genotoxicity in Allium Cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15, no. 2 (June 2019): 221-26. https://doi.org/10.18466/cbayarfbe.533466.
EndNote Liman R, Özkan S (June 1, 2019) Cytotoxicity and Genotoxicity in Allium cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15 2 221–226.
IEEE R. Liman and S. Özkan, “Cytotoxicity and Genotoxicity in Allium cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam”, CBUJOS, vol. 15, no. 2, pp. 221–226, 2019, doi: 10.18466/cbayarfbe.533466.
ISNAD Liman, Recep - Özkan, Seçil. “Cytotoxicity and Genotoxicity in Allium Cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15/2 (June 2019), 221-226. https://doi.org/10.18466/cbayarfbe.533466.
JAMA Liman R, Özkan S. Cytotoxicity and Genotoxicity in Allium cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam. CBUJOS. 2019;15:221–226.
MLA Liman, Recep and Seçil Özkan. “Cytotoxicity and Genotoxicity in Allium Cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 15, no. 2, 2019, pp. 221-6, doi:10.18466/cbayarfbe.533466.
Vancouver Liman R, Özkan S. Cytotoxicity and Genotoxicity in Allium cepa L. Root Meristem Cells Exposed to the Herbicide Penoxsulam. CBUJOS. 2019;15(2):221-6.