BibTex RIS Cite

EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE - ÜÇ BOYUTLU UZAYDA EULER-LAGRANGE DENKLEMLERİ

Year 2014, , 55 - 61, 06.01.2015
https://doi.org/10.18466/cbufbe.21908

Abstract

EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE

In this article, it is aimed to introduce the Euler-Lagrange equations using a three-dimensional space for mechanical systems. In addition to, the geometrical-physical results related to three-dimensional space for
mechanical systems are also given.

 ÜÇ BOYUTLU UZAYDA EULER-LAGRANGE DENKLEMLERİ

Bu makale ile üç boyutlu uzay kullanılarak mekanik sistemler için Euler-Lagrange denklemlerini tanıtmak amaçlanmıştır. Ek olarak, üç boyutlu uzaydaki mekanik sistemler için geometrik ve fiziksel sonuçlar da verilmiştir.

References

  • J. Klein, Escapes Variationnels et Mécanique, Ann. Inst. Fourier, Grenoble, 12 (1962), 1-124.
  • M. De Leon, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 152 (1989).
  • R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer, (2001), 483-542.
  • H. de Vries, Understanding Relativistic Quantum Field Theory, The Hamiltonian and Lagrangian http://www.physics- quest.org/Book_Chapter_Lagrangian.pdf), (2009).
  • M. Tekkoyun, On Para-Euler Lagrange and Para-Hamiltonian Equations, Physics Letters A, 34 (2005), 7-11. W.K.
  • Nanomechanics of Materials, American Scientific Publishers, Stevenson Ranch, CA, (2005).
  • M. Tekkoyun, M. Sari., Bi-para-Mechanical Systems on tThe Bi-Lagrangian Manifold, Physica B-Condensed Matter, 405 (2010), Issue 10, 2390- 23
  • M. Tekkoyun, Y. Yayli, Mechanical Systems on Generalized-Quaternionic IJGMMP, 8 (2011), No. 7, 1-13. Kähler Manifolds,
  • Z. Kasap and M. Tekkoyun, Mechanical Systems on Almost Para/Pseudo-Kähler.Weyl Manifolds, IJGMMP, 10 (2013). No.5, 1-8
  • O. Enge, P. Maiber, Multibody System Dynamics, Modelling Eelectromechanical Systems with Electrical Switching Components Using the Linear Complementarity System Dynamics, 13 (2005), No.4, 21-445. Problem, Multibody
  • D. McDu and D. Salamon, J-Holomorphic Curves http://www.math.sunysb.edu/~dusa/jholsm.pdf. Cohomology, A. Newlander and L. Nirenberg, Complex Analytic Manifolds. Ann. of Math. 65 (1957), 391-404. in Almost Complex

EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE

Year 2014, , 55 - 61, 06.01.2015
https://doi.org/10.18466/cbufbe.21908

Abstract

In this article, it is aimed to introduce the Euler-Lagrange equations using a three-dimensional space for mechanical systems. In addition to, the geometrical-physical results related to three-dimensional space for
mechanical systems are also given.

 

References

  • J. Klein, Escapes Variationnels et Mécanique, Ann. Inst. Fourier, Grenoble, 12 (1962), 1-124.
  • M. De Leon, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 152 (1989).
  • R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer, (2001), 483-542.
  • H. de Vries, Understanding Relativistic Quantum Field Theory, The Hamiltonian and Lagrangian http://www.physics- quest.org/Book_Chapter_Lagrangian.pdf), (2009).
  • M. Tekkoyun, On Para-Euler Lagrange and Para-Hamiltonian Equations, Physics Letters A, 34 (2005), 7-11. W.K.
  • Nanomechanics of Materials, American Scientific Publishers, Stevenson Ranch, CA, (2005).
  • M. Tekkoyun, M. Sari., Bi-para-Mechanical Systems on tThe Bi-Lagrangian Manifold, Physica B-Condensed Matter, 405 (2010), Issue 10, 2390- 23
  • M. Tekkoyun, Y. Yayli, Mechanical Systems on Generalized-Quaternionic IJGMMP, 8 (2011), No. 7, 1-13. Kähler Manifolds,
  • Z. Kasap and M. Tekkoyun, Mechanical Systems on Almost Para/Pseudo-Kähler.Weyl Manifolds, IJGMMP, 10 (2013). No.5, 1-8
  • O. Enge, P. Maiber, Multibody System Dynamics, Modelling Eelectromechanical Systems with Electrical Switching Components Using the Linear Complementarity System Dynamics, 13 (2005), No.4, 21-445. Problem, Multibody
  • D. McDu and D. Salamon, J-Holomorphic Curves http://www.math.sunysb.edu/~dusa/jholsm.pdf. Cohomology, A. Newlander and L. Nirenberg, Complex Analytic Manifolds. Ann. of Math. 65 (1957), 391-404. in Almost Complex
There are 11 citations in total.

Details

Primary Language EN
Journal Section Articles
Authors

Zeki Kasap

Publication Date January 6, 2015
Published in Issue Year 2014

Cite

APA Kasap, Z. (2015). EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 10(1), 55-61. https://doi.org/10.18466/cbufbe.21908
AMA Kasap Z. EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. CBUJOS. January 2015;10(1):55-61. doi:10.18466/cbufbe.21908
Chicago Kasap, Zeki. “EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 10, no. 1 (January 2015): 55-61. https://doi.org/10.18466/cbufbe.21908.
EndNote Kasap Z (January 1, 2015) EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 10 1 55–61.
IEEE Z. Kasap, “EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE”, CBUJOS, vol. 10, no. 1, pp. 55–61, 2015, doi: 10.18466/cbufbe.21908.
ISNAD Kasap, Zeki. “EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 10/1 (January 2015), 55-61. https://doi.org/10.18466/cbufbe.21908.
JAMA Kasap Z. EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. CBUJOS. 2015;10:55–61.
MLA Kasap, Zeki. “EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 1, 2015, pp. 55-61, doi:10.18466/cbufbe.21908.
Vancouver Kasap Z. EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. CBUJOS. 2015;10(1):55-61.