Calcium Phosphate Mineralization on Calcium Carbonate Particle Incorporated Silk-Fibroin Composites
Year 2019,
, 301 - 306, 30.09.2019
Derya Kapusuz
,
Batur Ercan
Abstract
In this study, three anhydrous forms of calcium carbonate, namely
vaterite, aragonite and calcite, with distinct morphologies were incorporated
inside silk-fibroin to fabricate composite scaffolds for tissue engineering
applications. To assess calcium phosphate mineralization, composite scaffolds
were treated with simulated body fluid up to one month. It was observed that
composite scaffolds having different calcium carbonate polymorphs expressed
different mineralization. Incorporating 25 wt. % of vaterite polymorph, which
was the least stable form of calcium carbonate under aqueous conditions,
induced the highest calcium phosphate mineralization in silk-fibroin while
calcium carbonate-free silk-fibroin scaffolds expressed no calcium phosphate
deposition. Results highlighted the importance of calcium carbonate particles
in enhancing the bioactivity of silk-fibroin based composite scaffolds.
Supporting Institution
METU, GAUN
Project Number
METU Research Funds Grant Number BAP-08-11-2017-019.
References
- 1. Murphy, A, R, Kaplan, D, L. 2010. Biomedical applications of chemically-modified silk fibroin. Journal of Materials Chemistry; 19(36): 6443-6450.
- 2. Wang, L, Chunxiang, L, Zhang, B, Zhao, B, Wu, F, Guan, S. 2014. Fabrication and characterization of flexible silk fibroin films reinforced with graphene oxide for biomedical applications. RSC Advances; 4: 40312-40320.
- 3. Pan, C, Xie, Q, Hu, Z, Yang, M, Zhu, L. 2015. Mechanical and biological properties of silk fibroin/carbon nanotube nanocomposites films. Fibers and Polymers; 16(8): 1781-1787.
- 4. Johari, N, Hosseini, M, Taromi, N, Arasteh, S, Kazemnejad, S, Samadikuchaksaraci, A. 2018. Evaluation of bioactivity and biocompatibility of silk fibroin/TiO2 nanocomposite. Journal of Medical and Biological Engineering; 38: 99-105.
- 5. Martin, R, B. 1999. Bone as a ceramic composite material. Materials Science Forum; 293: 5-16.
- 6. Li, C, Jin, H, J, Botsaris, G, D, Kaplan, D, L. 2005. Silk apatite composites from electrospun fibers. Journal of Materials Research; 20(12): 3374e84.
- 7. Bhumiratana, S, Grayson, W, L, Castaneda, A, Rockwood, D, N, Gil, E, S, Kaplan, D, L, Novakovic, G. 2011. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials; 32: 2812-20.
- 8. Eliaz, N, Metoki, N. 2017. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials (Basel); 10: 334.
- 9. Farokhi, M, Mottaghitalab, F, Samani, S, Shokrgozar, M. A, Kundu, S, C, Reis, R, L, Fatahi, Y, Kaplan, D, L. 2018. Silk fibroin/hydroxyapatite composites for bone tissue Engineering. Biotechnology Advances; 36(1): 68-91.
- 10. Wang, J, Yu, F, Qu, L, Meng, X, Wen, G. 2010. Study of synthesis of nano-hydroxyapatite using a silk fibroin template. Biomedical Materials; 5: 041002-041007.
- 11. Marelli, B, Ghezzi, C, E, Alessandrino, A, Barralet, J, E, Freddi, G, Nazhat, S, N. 2012. Silk fibroin derived polypeptide-induced biomineralization of collagen. Biomaterials; 33: 102-108.
- 12. Schröder, R, Besch, L, Pohlit, H, Panthöfer, M, Roth, W, Frey, H, Tremel, W, Unger, R, E. 2018. Particles of vaterite, a metastable CaCO3 polymorph, exhibit high biocompatiblity for human osteoblasts and endothelial cells and may serve as a biomaterial for rapid bone regeneration. Journal of Tissue Engineering and Regenerative Medicine; 12: 1754-1768.
- 13. Trushina, D, B, Bukreeva, T, V, Kovalchuk, M, V, Antipina, M, N. 2014. CaCO3 vaterite microparticles for biomedical and personal care applications. Materials Science and Engineering C; 45: 644-658.
- 14. Akilal, N, Lemarie, F, Bercu, N, B, Sayen, S, Gangloff, S, C, Khelfaoui, Y, Rammal, H, Kedjoudj, H. 2019. Cowries derived aragonite as raw Materials for bone regenerative medicine. Materials Science and Engineering C; 94, 894-900.
- 15. Wolsetsadik, A, D, Sharma, S, K, Khapli, S, Jagannathan, R. 2017. Hierarchically porous calcium carbonate scaffolds for bone tissue engineering. ACS Biomaterials Science and Engineering; 3: 2457-2469.
- 16. Rockwood, D, N, Preda, R, C, Yücel, T, Wang, X, Lovett, M, L, Kaplan, D, L. 2011. Materials fabrication from Bombyx mori silk fibroin, Nature Protocols; 6(10): 1612-1631.
- 17. Kokubo, T, Takadama, H. 2006. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials; 27(15): 2907-2915.
- 18. Ševčík, R, Pérez-Estébanez, M, Viani, A, Šašek, P, Mácová, P. 2015. Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives. Powder Technology; 284: 265-271.
- 19. Lu, Y, Zhang, S, Liu, X, Ye, S, Zhou, X, Huang, Q, Ren, L. 2017. Silk/agarose scaffolds with tunable properties via SDS assisted rapid gelation. RSC Advances; 7: 21740-21748.
- 20. Asakura, T, Kuzuhara, A, Tabeta, R, Saito, H. 1985. Conformation Characterization of Bombyx mori silk fibroin in the solid state by high frequency 13C cross-polarization-magic Angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules; 18: 1841-1845.
Year 2019,
, 301 - 306, 30.09.2019
Derya Kapusuz
,
Batur Ercan
Project Number
METU Research Funds Grant Number BAP-08-11-2017-019.
References
- 1. Murphy, A, R, Kaplan, D, L. 2010. Biomedical applications of chemically-modified silk fibroin. Journal of Materials Chemistry; 19(36): 6443-6450.
- 2. Wang, L, Chunxiang, L, Zhang, B, Zhao, B, Wu, F, Guan, S. 2014. Fabrication and characterization of flexible silk fibroin films reinforced with graphene oxide for biomedical applications. RSC Advances; 4: 40312-40320.
- 3. Pan, C, Xie, Q, Hu, Z, Yang, M, Zhu, L. 2015. Mechanical and biological properties of silk fibroin/carbon nanotube nanocomposites films. Fibers and Polymers; 16(8): 1781-1787.
- 4. Johari, N, Hosseini, M, Taromi, N, Arasteh, S, Kazemnejad, S, Samadikuchaksaraci, A. 2018. Evaluation of bioactivity and biocompatibility of silk fibroin/TiO2 nanocomposite. Journal of Medical and Biological Engineering; 38: 99-105.
- 5. Martin, R, B. 1999. Bone as a ceramic composite material. Materials Science Forum; 293: 5-16.
- 6. Li, C, Jin, H, J, Botsaris, G, D, Kaplan, D, L. 2005. Silk apatite composites from electrospun fibers. Journal of Materials Research; 20(12): 3374e84.
- 7. Bhumiratana, S, Grayson, W, L, Castaneda, A, Rockwood, D, N, Gil, E, S, Kaplan, D, L, Novakovic, G. 2011. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials; 32: 2812-20.
- 8. Eliaz, N, Metoki, N. 2017. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials (Basel); 10: 334.
- 9. Farokhi, M, Mottaghitalab, F, Samani, S, Shokrgozar, M. A, Kundu, S, C, Reis, R, L, Fatahi, Y, Kaplan, D, L. 2018. Silk fibroin/hydroxyapatite composites for bone tissue Engineering. Biotechnology Advances; 36(1): 68-91.
- 10. Wang, J, Yu, F, Qu, L, Meng, X, Wen, G. 2010. Study of synthesis of nano-hydroxyapatite using a silk fibroin template. Biomedical Materials; 5: 041002-041007.
- 11. Marelli, B, Ghezzi, C, E, Alessandrino, A, Barralet, J, E, Freddi, G, Nazhat, S, N. 2012. Silk fibroin derived polypeptide-induced biomineralization of collagen. Biomaterials; 33: 102-108.
- 12. Schröder, R, Besch, L, Pohlit, H, Panthöfer, M, Roth, W, Frey, H, Tremel, W, Unger, R, E. 2018. Particles of vaterite, a metastable CaCO3 polymorph, exhibit high biocompatiblity for human osteoblasts and endothelial cells and may serve as a biomaterial for rapid bone regeneration. Journal of Tissue Engineering and Regenerative Medicine; 12: 1754-1768.
- 13. Trushina, D, B, Bukreeva, T, V, Kovalchuk, M, V, Antipina, M, N. 2014. CaCO3 vaterite microparticles for biomedical and personal care applications. Materials Science and Engineering C; 45: 644-658.
- 14. Akilal, N, Lemarie, F, Bercu, N, B, Sayen, S, Gangloff, S, C, Khelfaoui, Y, Rammal, H, Kedjoudj, H. 2019. Cowries derived aragonite as raw Materials for bone regenerative medicine. Materials Science and Engineering C; 94, 894-900.
- 15. Wolsetsadik, A, D, Sharma, S, K, Khapli, S, Jagannathan, R. 2017. Hierarchically porous calcium carbonate scaffolds for bone tissue engineering. ACS Biomaterials Science and Engineering; 3: 2457-2469.
- 16. Rockwood, D, N, Preda, R, C, Yücel, T, Wang, X, Lovett, M, L, Kaplan, D, L. 2011. Materials fabrication from Bombyx mori silk fibroin, Nature Protocols; 6(10): 1612-1631.
- 17. Kokubo, T, Takadama, H. 2006. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials; 27(15): 2907-2915.
- 18. Ševčík, R, Pérez-Estébanez, M, Viani, A, Šašek, P, Mácová, P. 2015. Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives. Powder Technology; 284: 265-271.
- 19. Lu, Y, Zhang, S, Liu, X, Ye, S, Zhou, X, Huang, Q, Ren, L. 2017. Silk/agarose scaffolds with tunable properties via SDS assisted rapid gelation. RSC Advances; 7: 21740-21748.
- 20. Asakura, T, Kuzuhara, A, Tabeta, R, Saito, H. 1985. Conformation Characterization of Bombyx mori silk fibroin in the solid state by high frequency 13C cross-polarization-magic Angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules; 18: 1841-1845.