Research Article
BibTex RIS Cite

Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles

Year 2020, , 245 - 249, 29.09.2020
https://doi.org/10.18466/cbayarfbe.729586

Abstract

Microfluidic reactors are advantageous for nanomaterial synthesis due to their capability to provide controlled reaction environment. In this work, a droplet based microfluidic reactor is designed for the synthesis of silica nanoparticles. The synthesis is carried out in a very controlled environment and a uniform size and shape distribution is achieved. The classical synthesis protocol for silica nanoparticles is modified to use nonpolar solvents in the reaction so that this platform can later be used for coating hydrophobic nanomaterials. Therefore, this study not only presents a new device but also a new synthesis method. The results are compared with conventional batch wise synthesis methods and the obtained nanoparticles showed better size distribution.

Supporting Institution

TÜBİTAK

Project Number

114C092

Thanks

E. Y. Erdem would like to acknowledge the Tübitak 2232 grant that founded this research. She also thanks Mr. Alican Özkan and Mr. Arsalan Nikdoost for their help in laboratory studies.

References

  • 1. He, Q, Shi, J. 2010. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry; 21: 5845-5855.
  • 2. Zhao, CX, He, L, Qiao, SZ, Middelberg, APJ. 2011. Nanoparticle synthesis in microreactors. Chemical Engineering Science; 66(7): 1463-1479.
  • 3. Wu, KCW, Yamauchi, Y. 2012. Controlling physical features of mesoporoussilica nanoparticles (MSNs) for emergingapplications. Journal of Materials Chemistry; 22:1251-1256.
  • 4. Mebert, AM, Baglole, CJ, Desimone, MF, Maysinger, Dusica. 2017. Nanoengineered silica: properties, applications and toxicity. Food and Chemical Toxicology; 109(1): 753-770.
  • 5. Erdem, EY, Cheng, JC, Doyle, FM, Pisano, AP. 2014. Multitemperature zone, droplet-based microreactor for increased temperature control in nanoparticle synthesis. Small; 10(6): 1076-1080.
  • 6. Phillips, TW, Lignos, IG, Maceiczyk, RM, DeMello, AJ, DeMello, A. 2014. Nanocrystal synthesis in microfluidic reactors: where next?. Lab Chip.; 14(17): 3172-3180,
  • 7. Chang, CH, Paul, BK, Remcho, VT, Atre, S, Hutchison, JE. 2008. Synthesis and post-processing of nanomaterials using microreaction technology. Journal of Nanoparticle Research; 10: 965-980.
  • 8. Nightingale, AM, deMello, JC. 2012. Segmented flow reactors for nanocrystal synthesis. Advanced Materials; 25(13): 1813-1821.
  • 9. Khan, SA, Gunther, A, Schmidt, MA, Jensen, KF. 2004. Microfluidic synthesis of colloidal silica. Langmuir; 20(20): 8604-8611.
  • 10. Lee, I, Yoo, Y, Cheng, Z, Jeong, HK. 2008. Generation of monodisperse mesoporous silica microspheres with controllable size and surface morphology in a microfluidic device. Advanced Functional Materials, 18(24): 4014-4021.
  • 11. Carroll, NJ, Rathod, SB, Derbins, E, Mendez, S, Weitz, DA, Petsev, DN. 2008. Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir; 24(3): 658-661.
  • 12. Li, D, Guan, Z, Zhang, W, Zhou, X, Zhang, WY, Zhuang, Z, Wang, X, Yang, CJ. 2010. Synthesis of Uniform-Size Hollow Silica Microspheres through Interfacial Polymerization in Monodisperse Water-in-Oil Droplets. ACS Appl. Mater. Interfaces; 2(10): 2711-2714. 13. Su, M, Su, H, Du, B, Li, X, Ren, G, Wang, S. 2014. The properties of silica nanoparticles with high monodispersity synthesized in the microreactor system. Journal of Sol-Gel Science and Technology; 72(2): 375-384.
  • 14. Yan, H, Kim, C. 2014. Formation of monodisperse silica microparticles with various shapes and surface morphologies using double emulsion templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects; 443(20): 88-95.
  • 15. He, Y, Kim, KJ, Chang, CH. 2017. Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process. Nanotechnology; 28(23): 235602.
  • 16. Hao, N, Nie, Y. Xu, Z, Closson, AB, Usherwood, T, Zhang, JXJ. 2019. Microfluidic continuous flow synthesis of functional hollow spherical silica with hierarchical sponge-like large porous shell. Chemical Engineering Journal; 366: 433–438.
  • 17. He, P, Greenway, G. Haswell, SJ. 2011. Microfluidic synthesis of silica nanoparticles using polyethylenimine polymers. Chemical Engineering Journal; 167(2): 694-699.
  • 18. Wacker, JB, Lignos, I, Parashar, VK, Gijs, MAM. 2012. Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplet. Lab Chip; 12: 3111-3116.
  • 19. Kobayashi, Y, Nozawa, T, Nakagawa, T, Gonda, K, Takeda, M, Ohuchi, N, Kasuya, A. 2010. Direct coating of quantum dots with silica shell. Journal of Sol-Gel Science and Technology; 55: 79-85.
  • 20. Popović, Z, Liu, W, Chauhan, VP, Lee, J, Wong, C, Greytak, AB, Insin, N, Nocera, DG, Fukumura, D, Jain, RK, Bawendi, MG. 2010. A nanoparticle size series for in vivo fluorescence imaging. Angewandte Chemie; 122(46): 8831-8834.
Year 2020, , 245 - 249, 29.09.2020
https://doi.org/10.18466/cbayarfbe.729586

Abstract

Project Number

114C092

References

  • 1. He, Q, Shi, J. 2010. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry; 21: 5845-5855.
  • 2. Zhao, CX, He, L, Qiao, SZ, Middelberg, APJ. 2011. Nanoparticle synthesis in microreactors. Chemical Engineering Science; 66(7): 1463-1479.
  • 3. Wu, KCW, Yamauchi, Y. 2012. Controlling physical features of mesoporoussilica nanoparticles (MSNs) for emergingapplications. Journal of Materials Chemistry; 22:1251-1256.
  • 4. Mebert, AM, Baglole, CJ, Desimone, MF, Maysinger, Dusica. 2017. Nanoengineered silica: properties, applications and toxicity. Food and Chemical Toxicology; 109(1): 753-770.
  • 5. Erdem, EY, Cheng, JC, Doyle, FM, Pisano, AP. 2014. Multitemperature zone, droplet-based microreactor for increased temperature control in nanoparticle synthesis. Small; 10(6): 1076-1080.
  • 6. Phillips, TW, Lignos, IG, Maceiczyk, RM, DeMello, AJ, DeMello, A. 2014. Nanocrystal synthesis in microfluidic reactors: where next?. Lab Chip.; 14(17): 3172-3180,
  • 7. Chang, CH, Paul, BK, Remcho, VT, Atre, S, Hutchison, JE. 2008. Synthesis and post-processing of nanomaterials using microreaction technology. Journal of Nanoparticle Research; 10: 965-980.
  • 8. Nightingale, AM, deMello, JC. 2012. Segmented flow reactors for nanocrystal synthesis. Advanced Materials; 25(13): 1813-1821.
  • 9. Khan, SA, Gunther, A, Schmidt, MA, Jensen, KF. 2004. Microfluidic synthesis of colloidal silica. Langmuir; 20(20): 8604-8611.
  • 10. Lee, I, Yoo, Y, Cheng, Z, Jeong, HK. 2008. Generation of monodisperse mesoporous silica microspheres with controllable size and surface morphology in a microfluidic device. Advanced Functional Materials, 18(24): 4014-4021.
  • 11. Carroll, NJ, Rathod, SB, Derbins, E, Mendez, S, Weitz, DA, Petsev, DN. 2008. Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir; 24(3): 658-661.
  • 12. Li, D, Guan, Z, Zhang, W, Zhou, X, Zhang, WY, Zhuang, Z, Wang, X, Yang, CJ. 2010. Synthesis of Uniform-Size Hollow Silica Microspheres through Interfacial Polymerization in Monodisperse Water-in-Oil Droplets. ACS Appl. Mater. Interfaces; 2(10): 2711-2714. 13. Su, M, Su, H, Du, B, Li, X, Ren, G, Wang, S. 2014. The properties of silica nanoparticles with high monodispersity synthesized in the microreactor system. Journal of Sol-Gel Science and Technology; 72(2): 375-384.
  • 14. Yan, H, Kim, C. 2014. Formation of monodisperse silica microparticles with various shapes and surface morphologies using double emulsion templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects; 443(20): 88-95.
  • 15. He, Y, Kim, KJ, Chang, CH. 2017. Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process. Nanotechnology; 28(23): 235602.
  • 16. Hao, N, Nie, Y. Xu, Z, Closson, AB, Usherwood, T, Zhang, JXJ. 2019. Microfluidic continuous flow synthesis of functional hollow spherical silica with hierarchical sponge-like large porous shell. Chemical Engineering Journal; 366: 433–438.
  • 17. He, P, Greenway, G. Haswell, SJ. 2011. Microfluidic synthesis of silica nanoparticles using polyethylenimine polymers. Chemical Engineering Journal; 167(2): 694-699.
  • 18. Wacker, JB, Lignos, I, Parashar, VK, Gijs, MAM. 2012. Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplet. Lab Chip; 12: 3111-3116.
  • 19. Kobayashi, Y, Nozawa, T, Nakagawa, T, Gonda, K, Takeda, M, Ohuchi, N, Kasuya, A. 2010. Direct coating of quantum dots with silica shell. Journal of Sol-Gel Science and Technology; 55: 79-85.
  • 20. Popović, Z, Liu, W, Chauhan, VP, Lee, J, Wong, C, Greytak, AB, Insin, N, Nocera, DG, Fukumura, D, Jain, RK, Bawendi, MG. 2010. A nanoparticle size series for in vivo fluorescence imaging. Angewandte Chemie; 122(46): 8831-8834.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emine Yegan Erdem 0000-0001-9852-2293

Project Number 114C092
Publication Date September 29, 2020
Published in Issue Year 2020

Cite

APA Erdem, E. Y. (2020). Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 16(3), 245-249. https://doi.org/10.18466/cbayarfbe.729586
AMA Erdem EY. Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles. CBUJOS. September 2020;16(3):245-249. doi:10.18466/cbayarfbe.729586
Chicago Erdem, Emine Yegan. “Droplet-Based Microfluidic Device for the Synthesis of Silica Nanoparticles”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16, no. 3 (September 2020): 245-49. https://doi.org/10.18466/cbayarfbe.729586.
EndNote Erdem EY (September 1, 2020) Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16 3 245–249.
IEEE E. Y. Erdem, “Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles”, CBUJOS, vol. 16, no. 3, pp. 245–249, 2020, doi: 10.18466/cbayarfbe.729586.
ISNAD Erdem, Emine Yegan. “Droplet-Based Microfluidic Device for the Synthesis of Silica Nanoparticles”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16/3 (September 2020), 245-249. https://doi.org/10.18466/cbayarfbe.729586.
JAMA Erdem EY. Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles. CBUJOS. 2020;16:245–249.
MLA Erdem, Emine Yegan. “Droplet-Based Microfluidic Device for the Synthesis of Silica Nanoparticles”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 16, no. 3, 2020, pp. 245-9, doi:10.18466/cbayarfbe.729586.
Vancouver Erdem EY. Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles. CBUJOS. 2020;16(3):245-9.