Research Article
BibTex RIS Cite
Year 2020, , 293 - 300, 29.09.2020
https://doi.org/10.18466/cbayarfbe.734061

Abstract

Project Number

2019-056

References

  • 1. Jiang, B, Iocozzia, J, Zhao, L, Zhang, H, Harn, Y, Lin, Z. 2019. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chemical Society Reviews; 48: 1194-1228.
  • 2. Buscaglia, MT, Bassoli, M, Buscaglia, V, Alessio, R. 2005. Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2. Journal of American Chemical Society; 88: 2374-2379.
  • 3. Prasadarao, AV, Suresh, M, Komarneni, S. 1999. pH dependent coprecipitated oxalate precursors–a thermal study of barium titanate. Materials Letters; 36(6): 359-363.
  • 4. Upadhyay, RH, Argekar AP, Deshmukh RR. 2014. Characterization, dielectric and electrical behavior of BaTiO3 nanoparticles prepared via titanium(IV) triethanolaminato isopropoxide and hydrated barium hydroxide. Bulletine of Material Science; 37(3): 481-489.
  • 5. Prado, LR, de Resende, NS, Silva, RS, Egues, SMS,Salazar-Banda, GR. 2016. Influence of the synthesis method on the preparation of barium titanate nanoparticles. Chemical Engineering and Processing: Process Intensification; 103: 12–20.
  • 6. Vinothini, V, Paramanand, S, Balasubramanian, M. 2006. Synthesis of barium titanate nanopowder using polymeric precursor method. Ceramics International; 32: 99-103.
  • 7. Xu, M, Lu, Y-N, Liu, Y-F, Shi, S-Z, Qian, T-S, Lu, D-Y. 2006. Sonochemical synthesis of monosized spherical BaTiO3 particles. Powder Technology; 161(3): 185-189.
  • 8. Jung, DS, Hong, SK, Cho, JS, Kang, YC. 2008. Nano-sized barium titanate powders with tetragonal crystal structure prepared by flame spray pyrolysis. Journal of the European Ceramic Society; 28(1): 109-115.
  • 9. Terashi, Y, Purwanto, A, Wang, WN, Iskandar, F, Okuyama, K. 2008. Role of urea addition in the preparation of tetragonal BaTiO3 nanoparticles using flame-assisted spray pyrolysis. Journal of European Ceramic Society; 28:2573-2580.
  • 10. Kumar, S, Messing, GL, White, WB. 1993. Metal Organic Resin Derived Barium Titanate: I, Formation of Barium Titanium Oxycarbonate Intermediate. Journal of American Ceramic Society; 76: 617.
  • 11. Cho, WS. 1998. Structural evolution and characterization of BaTiO3 nanoparticles synthesized from polymeric precursor. Journal of Physics and Chemical Solids; 59(5): 659-666. 12. Ring, TA. Fundamentals of Ceramic Powder Processing and Synthesis; Academic Press: California, USA, 1996; pp 346.
  • 13. Assirey, EAR. 2019. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceutical Journal; 27: 817-829.
  • 14. Match! - Phase Identification from Powder Diffraction, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/match
  • 15. Rodríguez-Carvajal, J. 1993. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter; 192: 55–69.
  • 16. K. Momma, K, Izumi, F. 2008. VESTA: a three‐dimensional visualization system for electronic and structural analysis. Applied Crystallography; 41: 653–658.
  • 17. Ashiri, R, Nemati, A, Ghamsari, MS, Sanjabi, S, Aalipour, M. 2011. A Modified method for Barium Titanate nanoparticles synthesis. Materials Research Bulletine; 46: 2291-2295.
  • 18. Ashiri, R. 2013. Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vibrational Spectroscopy; 66: 24-29.
  • 19. Lazarevi´c, Z, Vijatovi´c, M, Dohˇcevi´c-Mitrovi´c, Z, Romˇcevi´c, NZ, Romˇcevi´c, MJ, Paunovi´c, N, Stojanovi´c, BD. 2010. The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis. Journal of the European Ceramic Society;30: 623-628. 20. Wu, YT, Wang, XF, Yu, CL, Li, EY. 2012. Preparation and Characterization of Barium Titanate (batio3) Nanopowders by Pechini Sol-gel Method. Materials and Manufacturing Processes; 27: 1329-1333.

Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process

Year 2020, , 293 - 300, 29.09.2020
https://doi.org/10.18466/cbayarfbe.734061

Abstract

Barium titanate nanoparticles have been synthesized via Pechini method, using barium acetate and an aqueous solution of titanium(IV) triethanolaminato isopropoxide. Structural properties of barium titanate (BaTiO3) are characterized by X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). XRD and Rietveld refinement studies revealed that BaTiO3 possesses a cubic structure with a space group of Pm-3m (#221). As estimated by the Scherrer formula, the average crystallite size was accurately determined to be properly 51.9 nm for the calcined temperature at 800ºC.

Supporting Institution

Scientific Research Project Office of Manisa Celal Bayar University

Project Number

2019-056

References

  • 1. Jiang, B, Iocozzia, J, Zhao, L, Zhang, H, Harn, Y, Lin, Z. 2019. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chemical Society Reviews; 48: 1194-1228.
  • 2. Buscaglia, MT, Bassoli, M, Buscaglia, V, Alessio, R. 2005. Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2. Journal of American Chemical Society; 88: 2374-2379.
  • 3. Prasadarao, AV, Suresh, M, Komarneni, S. 1999. pH dependent coprecipitated oxalate precursors–a thermal study of barium titanate. Materials Letters; 36(6): 359-363.
  • 4. Upadhyay, RH, Argekar AP, Deshmukh RR. 2014. Characterization, dielectric and electrical behavior of BaTiO3 nanoparticles prepared via titanium(IV) triethanolaminato isopropoxide and hydrated barium hydroxide. Bulletine of Material Science; 37(3): 481-489.
  • 5. Prado, LR, de Resende, NS, Silva, RS, Egues, SMS,Salazar-Banda, GR. 2016. Influence of the synthesis method on the preparation of barium titanate nanoparticles. Chemical Engineering and Processing: Process Intensification; 103: 12–20.
  • 6. Vinothini, V, Paramanand, S, Balasubramanian, M. 2006. Synthesis of barium titanate nanopowder using polymeric precursor method. Ceramics International; 32: 99-103.
  • 7. Xu, M, Lu, Y-N, Liu, Y-F, Shi, S-Z, Qian, T-S, Lu, D-Y. 2006. Sonochemical synthesis of monosized spherical BaTiO3 particles. Powder Technology; 161(3): 185-189.
  • 8. Jung, DS, Hong, SK, Cho, JS, Kang, YC. 2008. Nano-sized barium titanate powders with tetragonal crystal structure prepared by flame spray pyrolysis. Journal of the European Ceramic Society; 28(1): 109-115.
  • 9. Terashi, Y, Purwanto, A, Wang, WN, Iskandar, F, Okuyama, K. 2008. Role of urea addition in the preparation of tetragonal BaTiO3 nanoparticles using flame-assisted spray pyrolysis. Journal of European Ceramic Society; 28:2573-2580.
  • 10. Kumar, S, Messing, GL, White, WB. 1993. Metal Organic Resin Derived Barium Titanate: I, Formation of Barium Titanium Oxycarbonate Intermediate. Journal of American Ceramic Society; 76: 617.
  • 11. Cho, WS. 1998. Structural evolution and characterization of BaTiO3 nanoparticles synthesized from polymeric precursor. Journal of Physics and Chemical Solids; 59(5): 659-666. 12. Ring, TA. Fundamentals of Ceramic Powder Processing and Synthesis; Academic Press: California, USA, 1996; pp 346.
  • 13. Assirey, EAR. 2019. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceutical Journal; 27: 817-829.
  • 14. Match! - Phase Identification from Powder Diffraction, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/match
  • 15. Rodríguez-Carvajal, J. 1993. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter; 192: 55–69.
  • 16. K. Momma, K, Izumi, F. 2008. VESTA: a three‐dimensional visualization system for electronic and structural analysis. Applied Crystallography; 41: 653–658.
  • 17. Ashiri, R, Nemati, A, Ghamsari, MS, Sanjabi, S, Aalipour, M. 2011. A Modified method for Barium Titanate nanoparticles synthesis. Materials Research Bulletine; 46: 2291-2295.
  • 18. Ashiri, R. 2013. Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vibrational Spectroscopy; 66: 24-29.
  • 19. Lazarevi´c, Z, Vijatovi´c, M, Dohˇcevi´c-Mitrovi´c, Z, Romˇcevi´c, NZ, Romˇcevi´c, MJ, Paunovi´c, N, Stojanovi´c, BD. 2010. The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis. Journal of the European Ceramic Society;30: 623-628. 20. Wu, YT, Wang, XF, Yu, CL, Li, EY. 2012. Preparation and Characterization of Barium Titanate (batio3) Nanopowders by Pechini Sol-gel Method. Materials and Manufacturing Processes; 27: 1329-1333.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Pelin Aktaş

Project Number 2019-056
Publication Date September 29, 2020
Published in Issue Year 2020

Cite

APA Aktaş, P. (2020). Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 16(3), 293-300. https://doi.org/10.18466/cbayarfbe.734061
AMA Aktaş P. Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. CBUJOS. September 2020;16(3):293-300. doi:10.18466/cbayarfbe.734061
Chicago Aktaş, Pelin. “Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16, no. 3 (September 2020): 293-300. https://doi.org/10.18466/cbayarfbe.734061.
EndNote Aktaş P (September 1, 2020) Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16 3 293–300.
IEEE P. Aktaş, “Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process”, CBUJOS, vol. 16, no. 3, pp. 293–300, 2020, doi: 10.18466/cbayarfbe.734061.
ISNAD Aktaş, Pelin. “Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16/3 (September 2020), 293-300. https://doi.org/10.18466/cbayarfbe.734061.
JAMA Aktaş P. Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. CBUJOS. 2020;16:293–300.
MLA Aktaş, Pelin. “Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 16, no. 3, 2020, pp. 293-00, doi:10.18466/cbayarfbe.734061.
Vancouver Aktaş P. Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. CBUJOS. 2020;16(3):293-300.