Research Article
BibTex RIS Cite
Year 2021, , 235 - 244, 27.09.2021
https://doi.org/10.18466/cbayarfbe.874287

Abstract

References

  • 1 B. Raj, U.K. Mudali, M. Vijayalakshmi, M.D. Mathew, A.K. Bhaduri, P. Chellapandi, S., Venugopal, C.S. Sundar, B.P.C. Rao, B. Venkataraman, Development of stainlesss steels in nuclear industry: with emphasis on sodium cooled fast spectrum reactors: history, technology and foresight. Adv. Mater. Res., 794, 3-25 (2013). https://doi.org/10.4028/www.scientific.net/AMR.794.3
  • 2 F. Cattant, D. Crusset, D. Féron, Corrosion issues in nuclear industry today. Mater. Today, 11(10), 32-37 (2008). https://doi.org/10.1016/S1369-7021(08)70205-0
  • 3 A.H. El-Kateb, R.A.M. Rizk, A.M. Abduk-Kader, Determination of atomic cross-sections and effective atomic numbers for some allays. Ann. Nucl. Energy, 27(14), 1333-1343 (2000). https://doi.org/10.1016/S0306-4549(99)00121-8
  • 4 I. Akkurt, Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. Energy, 36(11-12), 1702-1705 82009). https://doi.org/10.1016/j.anucene.2009.09.005
  • 5 M.E. Medhat, Y. Wang, Investigation on radiation shielding parameters of oxide dispersion strengthened steels used in high temperature nuclear reactor applications. Ann. Nucl. Energy, 80, 365-370 (2015). https://doi.org/10.1016/j.anucene.2015.01.044
  • 6 V.P. Singh, M.E. Medhat, S.P. Shirmardi, Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiat. Phys. Chem., 106, 255-260 (2015). https://doi.org/10.1016/j.radphyschem.2014.07.002
  • 7 S. Yıldırım, A.B., tugrul, B. Buyuk, E. Demir, Gamma Attenuation properties of some aluminum alloys, Acta Phys. Pol. A, 129(4), 813-815 (2016). https://doi.org/10.12693/APhysPolA.129.813
  • 8 M. Büyükyıldız, M. Kurudirek, M. Ekici, O. İçelli, Y. Karabul, Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma ray sources. Prog. Nucl. Energy, 100, 244-254 (2017). https://doi.org/10.1016/j.pnucene.2017.06.014
  • 9 M. Büyükyıldız, Effect of current intensity on radiological properties of joined 304L stainless steels for photon interaction. Nucl. Sci. Tech., 29:8, (2018). https://doi.org/10.1007/s41365-017-0353-1
  • 10 F. Akman, M.I. Sayyed, M.R. Kaçal, H.O. Tekin, Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV-1333 keV. J. Alloys Compdd., 772, 516-524 (2019). https://doi.org/10.1016/j.jallcom.2018.09.177
  • 11 D. Yılmaz, B. Aktaş, A. Çalık, O.B. Aytar, Boronizing effect on the radiation shielding properties of Hardox 450 and Hardox HiTuf steels. Radiat. Phys. Chem., 161, 55-59 (2019). https://doi.org/10.1016/j.radphyschem.2019.04.019
  • 12 J. Li, M. Huang, R. Hou, X. Ouyang, Photon attenuation coefficients of oxide dispersion strengthened steels by Geant4, XCOM and experimental data. Radiat. Phys. Chem., 161, 23-28 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.042
  • 13 E. Şakar, M. Büyükyıldız, B. Alım, B.C. Şakar, M. Kurudirek, Leaded brass alloys for gamma-ray shielding applications. Radiat. Phys. Chem., 159, 64-69 (2019). https://doi.org/10.1016/j.radphyschem.2019.02.042
  • 14 F. Akman, M.R. Kaçal, M.I. Sayyed, H.A. Karataş, Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd., 782, 315-322 (2019). https://doi.org/10.1016/j.jallcom.2018.12.221
  • 15 B. Alım, E. Şakar, A. Baltakesmez, İ. Han, M.I. Sayyed, L. Demir, Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I. Radiat. Phys. Chem., 166, 108455 (2020). https://doi.org/10.1016/j.radphyschem.2019.108455
  • 16 B. Alım, E. Şakar, İ. Han, M.I. Sayyed, Evaluation the gamma, charged particle and fast neutron shielding performances of some important AISI-coded stainless steels: Part II. Radiat. Phys. Chem., 166, 108454 (2020). https://doi.org/10.1016/j.radphyschem.2019.108455
  • 17 R.H. Sterne Jr., L.E. Steele, Steels for commercial nuclear power reactor pressure vessels. Nucl. Eng. Des., 10(3), 259-307, (1969). https://doi.org/10.1016/0029-5493(69)90066-1
  • 18 D. Neff, M. Saheb, J. Monnier, S. Perrin, M. Descostes, V. L’Hostis, D. Crusset, A. Millard, P. Dillmann, A review of the archaeological analogue approaches to predict the long-term corrosion behaviour of carbon steel overpack and reinforced concrete structures in the French disposal systems. J. Nucl. Mater., 402, 196-205 (2010). https://doi.org/10.1016/j.jnucmat.2010.05.003
  • 19 H.M. Finniston, The sixth royal society technology lecture: Nuclear energy for the steel industry. Proc. R. Soc. Lond. A. 340, 139-146 (1974). http://www.jstor.org/stable/78625
  • 20 T. Standish, J. Chen, R. Jacklin, P. jakupi, S. Ramamurty, D. Zagidulin, P. Keech, D. Shoesmith, Corrosion of copper-coated steel high level nuclear waste containers under permanent disposal conditions. Electrochim. Acta, 211, 331-342 (2016). https://doi.org/10.1016/j.electacta.2016.05.135
  • 21 S.M. Seltzer, J.H. Hubbell, Tables and Graphs of Photon Mass Attenuation Coefficient and Mass Energy-Absorption Coefficients for Photon Energies 1 keV to 20 MeV for Elements Z = 1 to 92 and Some Dosimetric Materials, Appendix to invited plenary lecture by J.H. Hubbell ``45 Years (1950-1995) with X-Ray Interactions and Applications'' presented at the 51st National Meeting of the Japanese Society of Radiological Technology, April 14-16, 1995, Nagoya, Japan.
  • 22 L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem., 71:(3-4), 653-654 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040
  • 23 I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy, 24(17), 1389-1401 (1997). https://doi.org/10.1016/S0306-4549(97)00003-0

Effects of the nickel, copper, silver and tin coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 steels for radiation shielding performance

Year 2021, , 235 - 244, 27.09.2021
https://doi.org/10.18466/cbayarfbe.874287

Abstract

In this study, S235JR (1.0037), 21NiCrMo2 (1.6523), C45 (1.0503), 42CrMo4 (1.7225) steels were coated with nickel, copper, silver, and tin. Then, the radiation shielding performances of the uncoated and coated steels were investigated. The steels were firstly designed by the coating processes via electrolytic plating method on behalf of Ni, Cu, Ag and Sn metals. The samples were then irradiated by radioactive sources for transmission of the gamma rays at 81–383 keV photon energies to measure linear and mass attenuation coefficients (LAC-µ, MAC-µ/) of the pure and coated steels by Ni, Cu, Ag and Sn. Half and tenth value of layers (HVL and TVL) of investigated materials were then calculated at the same studied photon energies. The materials were compared with each other and some shielding concretes on behalf of mean free paths (MFP) at possible. The coated steels were found to be better shielding materials than the concretes due to lower MFP values, and they were also better shielding than reference materials up to 35.31% relative difference in MFP. It was concluded that coating processes improved the shielding properties of the steels.

References

  • 1 B. Raj, U.K. Mudali, M. Vijayalakshmi, M.D. Mathew, A.K. Bhaduri, P. Chellapandi, S., Venugopal, C.S. Sundar, B.P.C. Rao, B. Venkataraman, Development of stainlesss steels in nuclear industry: with emphasis on sodium cooled fast spectrum reactors: history, technology and foresight. Adv. Mater. Res., 794, 3-25 (2013). https://doi.org/10.4028/www.scientific.net/AMR.794.3
  • 2 F. Cattant, D. Crusset, D. Féron, Corrosion issues in nuclear industry today. Mater. Today, 11(10), 32-37 (2008). https://doi.org/10.1016/S1369-7021(08)70205-0
  • 3 A.H. El-Kateb, R.A.M. Rizk, A.M. Abduk-Kader, Determination of atomic cross-sections and effective atomic numbers for some allays. Ann. Nucl. Energy, 27(14), 1333-1343 (2000). https://doi.org/10.1016/S0306-4549(99)00121-8
  • 4 I. Akkurt, Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. Energy, 36(11-12), 1702-1705 82009). https://doi.org/10.1016/j.anucene.2009.09.005
  • 5 M.E. Medhat, Y. Wang, Investigation on radiation shielding parameters of oxide dispersion strengthened steels used in high temperature nuclear reactor applications. Ann. Nucl. Energy, 80, 365-370 (2015). https://doi.org/10.1016/j.anucene.2015.01.044
  • 6 V.P. Singh, M.E. Medhat, S.P. Shirmardi, Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiat. Phys. Chem., 106, 255-260 (2015). https://doi.org/10.1016/j.radphyschem.2014.07.002
  • 7 S. Yıldırım, A.B., tugrul, B. Buyuk, E. Demir, Gamma Attenuation properties of some aluminum alloys, Acta Phys. Pol. A, 129(4), 813-815 (2016). https://doi.org/10.12693/APhysPolA.129.813
  • 8 M. Büyükyıldız, M. Kurudirek, M. Ekici, O. İçelli, Y. Karabul, Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma ray sources. Prog. Nucl. Energy, 100, 244-254 (2017). https://doi.org/10.1016/j.pnucene.2017.06.014
  • 9 M. Büyükyıldız, Effect of current intensity on radiological properties of joined 304L stainless steels for photon interaction. Nucl. Sci. Tech., 29:8, (2018). https://doi.org/10.1007/s41365-017-0353-1
  • 10 F. Akman, M.I. Sayyed, M.R. Kaçal, H.O. Tekin, Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV-1333 keV. J. Alloys Compdd., 772, 516-524 (2019). https://doi.org/10.1016/j.jallcom.2018.09.177
  • 11 D. Yılmaz, B. Aktaş, A. Çalık, O.B. Aytar, Boronizing effect on the radiation shielding properties of Hardox 450 and Hardox HiTuf steels. Radiat. Phys. Chem., 161, 55-59 (2019). https://doi.org/10.1016/j.radphyschem.2019.04.019
  • 12 J. Li, M. Huang, R. Hou, X. Ouyang, Photon attenuation coefficients of oxide dispersion strengthened steels by Geant4, XCOM and experimental data. Radiat. Phys. Chem., 161, 23-28 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.042
  • 13 E. Şakar, M. Büyükyıldız, B. Alım, B.C. Şakar, M. Kurudirek, Leaded brass alloys for gamma-ray shielding applications. Radiat. Phys. Chem., 159, 64-69 (2019). https://doi.org/10.1016/j.radphyschem.2019.02.042
  • 14 F. Akman, M.R. Kaçal, M.I. Sayyed, H.A. Karataş, Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd., 782, 315-322 (2019). https://doi.org/10.1016/j.jallcom.2018.12.221
  • 15 B. Alım, E. Şakar, A. Baltakesmez, İ. Han, M.I. Sayyed, L. Demir, Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I. Radiat. Phys. Chem., 166, 108455 (2020). https://doi.org/10.1016/j.radphyschem.2019.108455
  • 16 B. Alım, E. Şakar, İ. Han, M.I. Sayyed, Evaluation the gamma, charged particle and fast neutron shielding performances of some important AISI-coded stainless steels: Part II. Radiat. Phys. Chem., 166, 108454 (2020). https://doi.org/10.1016/j.radphyschem.2019.108455
  • 17 R.H. Sterne Jr., L.E. Steele, Steels for commercial nuclear power reactor pressure vessels. Nucl. Eng. Des., 10(3), 259-307, (1969). https://doi.org/10.1016/0029-5493(69)90066-1
  • 18 D. Neff, M. Saheb, J. Monnier, S. Perrin, M. Descostes, V. L’Hostis, D. Crusset, A. Millard, P. Dillmann, A review of the archaeological analogue approaches to predict the long-term corrosion behaviour of carbon steel overpack and reinforced concrete structures in the French disposal systems. J. Nucl. Mater., 402, 196-205 (2010). https://doi.org/10.1016/j.jnucmat.2010.05.003
  • 19 H.M. Finniston, The sixth royal society technology lecture: Nuclear energy for the steel industry. Proc. R. Soc. Lond. A. 340, 139-146 (1974). http://www.jstor.org/stable/78625
  • 20 T. Standish, J. Chen, R. Jacklin, P. jakupi, S. Ramamurty, D. Zagidulin, P. Keech, D. Shoesmith, Corrosion of copper-coated steel high level nuclear waste containers under permanent disposal conditions. Electrochim. Acta, 211, 331-342 (2016). https://doi.org/10.1016/j.electacta.2016.05.135
  • 21 S.M. Seltzer, J.H. Hubbell, Tables and Graphs of Photon Mass Attenuation Coefficient and Mass Energy-Absorption Coefficients for Photon Energies 1 keV to 20 MeV for Elements Z = 1 to 92 and Some Dosimetric Materials, Appendix to invited plenary lecture by J.H. Hubbell ``45 Years (1950-1995) with X-Ray Interactions and Applications'' presented at the 51st National Meeting of the Japanese Society of Radiological Technology, April 14-16, 1995, Nagoya, Japan.
  • 22 L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem., 71:(3-4), 653-654 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040
  • 23 I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy, 24(17), 1389-1401 (1997). https://doi.org/10.1016/S0306-4549(97)00003-0
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İdris Karagöz 0000-0002-2644-8511

Erdem Şakar 0000-0002-1359-4464

Murat Türemiş 0000-0001-8849-4364

Mehmet Büyükyıldız This is me 0000-0003-2025-4916

Publication Date September 27, 2021
Published in Issue Year 2021

Cite

APA Karagöz, İ., Şakar, E., Türemiş, M., Büyükyıldız, M. (2021). Effects of the nickel, copper, silver and tin coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 steels for radiation shielding performance. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(3), 235-244. https://doi.org/10.18466/cbayarfbe.874287
AMA Karagöz İ, Şakar E, Türemiş M, Büyükyıldız M. Effects of the nickel, copper, silver and tin coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 steels for radiation shielding performance. CBUJOS. September 2021;17(3):235-244. doi:10.18466/cbayarfbe.874287
Chicago Karagöz, İdris, Erdem Şakar, Murat Türemiş, and Mehmet Büyükyıldız. “Effects of the Nickel, Copper, Silver and Tin Coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 Steels for Radiation Shielding Performance”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, no. 3 (September 2021): 235-44. https://doi.org/10.18466/cbayarfbe.874287.
EndNote Karagöz İ, Şakar E, Türemiş M, Büyükyıldız M (September 1, 2021) Effects of the nickel, copper, silver and tin coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 steels for radiation shielding performance. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 3 235–244.
IEEE İ. Karagöz, E. Şakar, M. Türemiş, and M. Büyükyıldız, “Effects of the nickel, copper, silver and tin coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 steels for radiation shielding performance”, CBUJOS, vol. 17, no. 3, pp. 235–244, 2021, doi: 10.18466/cbayarfbe.874287.
ISNAD Karagöz, İdris et al. “Effects of the Nickel, Copper, Silver and Tin Coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 Steels for Radiation Shielding Performance”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/3 (September 2021), 235-244. https://doi.org/10.18466/cbayarfbe.874287.
JAMA Karagöz İ, Şakar E, Türemiş M, Büyükyıldız M. Effects of the nickel, copper, silver and tin coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 steels for radiation shielding performance. CBUJOS. 2021;17:235–244.
MLA Karagöz, İdris et al. “Effects of the Nickel, Copper, Silver and Tin Coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 Steels for Radiation Shielding Performance”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 17, no. 3, 2021, pp. 235-44, doi:10.18466/cbayarfbe.874287.
Vancouver Karagöz İ, Şakar E, Türemiş M, Büyükyıldız M. Effects of the nickel, copper, silver and tin coating on S235JR, 21NiCrMo2, C45 and 42CrMo4 steels for radiation shielding performance. CBUJOS. 2021;17(3):235-44.