Research Article
BibTex RIS Cite

General Atom-Bond-Connectivity Index Of Graphs

Year 2022, , 91 - 94, 25.03.2022
https://doi.org/10.18466/cbayarfbe.975636

Abstract

The Atom-bond-connectivity index ABC of a graph G is determined by d_i and d_j. In this paper, sharp results for the general ABC index which has chemical applications are found using different methods. These new results for ABC inex are investigated in terms of its edges, its vertices and its degrees. In particular, some relations for general ABC index is obtained involving different topological indices; Randic index, Zagreb index, Harmonic index and Narumi-Katayama index. Indeed, general ABC index are improved by the help of the maximum annd minimum degrees.

References

  • Ahmadi, M.B., Dimitrov, D., Gutman, I., Hosseini, S.A., Disproving a conjecture on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 72, 685-698, 2014.
  • Randi´c, M., On characterization of molecular branching, J. Amer. Chem. Soc. 97, 6609-6615, 1975.
  • Bapat, R.B., Graphs and Matrices, Indian Statistical Institute, New Delhi 110016,India, 2010.
  • Bianchi, M., Cornaro, A., Palacios, J.L., Torriero, A., New upper bounds for the ABC index, MATCH Commun. Math. Comput. Chem. 76, 117-130, 2016.
  • Borovi´canin, B., Furtula, B., On extremal Zagreb indices of trees with given domination number, Appl. Math. Comput. 279, 208-218, 2016.
  • Büyükköse, S., Altınk, E., Yalçın, F., Improved Bounds for the Extremal Non-trivial Laplacian Eigenvalues, Gazi University Journal of Science, 28, (1), 65-68, 2015.
  • Das, K.C., Atom-bond connectivity index of graphs, Discr. Appl. Math. 158, 1181-1188, 2010.
  • Das, K.C., On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 63, 433-440, 2010.
  • Ghorbani, M., Songhori, M., Gutman, I., Modified Narumi-Katayama index, Kragujevac J. Sci. 34, 5764, 2012.
  • Gutman, I., Degree-based topological indices, Croat. Chem. Acta 86, 351-361, 2013.
  • Jos´e, M.R., Jos´e, M.S., New Results on the Harmonic Index and Its Generalizations, MATCH Commun. Math. Comput. Chem. 78, 387-404, 2017.
  • Fajtlowicz, S., On conjectures of Graffiti-II, Congr. Num. 60, 187-197, 1987.
  • Kaya Gök, G., Some Bounds on the Distance-Sum-Connectivity Matrix, Journal of Inequalities and Applications, 171, 2018.
  • Wua, R., Tanga, Z., Deng, H., A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27, 51-55, 2013.
Year 2022, , 91 - 94, 25.03.2022
https://doi.org/10.18466/cbayarfbe.975636

Abstract

References

  • Ahmadi, M.B., Dimitrov, D., Gutman, I., Hosseini, S.A., Disproving a conjecture on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 72, 685-698, 2014.
  • Randi´c, M., On characterization of molecular branching, J. Amer. Chem. Soc. 97, 6609-6615, 1975.
  • Bapat, R.B., Graphs and Matrices, Indian Statistical Institute, New Delhi 110016,India, 2010.
  • Bianchi, M., Cornaro, A., Palacios, J.L., Torriero, A., New upper bounds for the ABC index, MATCH Commun. Math. Comput. Chem. 76, 117-130, 2016.
  • Borovi´canin, B., Furtula, B., On extremal Zagreb indices of trees with given domination number, Appl. Math. Comput. 279, 208-218, 2016.
  • Büyükköse, S., Altınk, E., Yalçın, F., Improved Bounds for the Extremal Non-trivial Laplacian Eigenvalues, Gazi University Journal of Science, 28, (1), 65-68, 2015.
  • Das, K.C., Atom-bond connectivity index of graphs, Discr. Appl. Math. 158, 1181-1188, 2010.
  • Das, K.C., On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 63, 433-440, 2010.
  • Ghorbani, M., Songhori, M., Gutman, I., Modified Narumi-Katayama index, Kragujevac J. Sci. 34, 5764, 2012.
  • Gutman, I., Degree-based topological indices, Croat. Chem. Acta 86, 351-361, 2013.
  • Jos´e, M.R., Jos´e, M.S., New Results on the Harmonic Index and Its Generalizations, MATCH Commun. Math. Comput. Chem. 78, 387-404, 2017.
  • Fajtlowicz, S., On conjectures of Graffiti-II, Congr. Num. 60, 187-197, 1987.
  • Kaya Gök, G., Some Bounds on the Distance-Sum-Connectivity Matrix, Journal of Inequalities and Applications, 171, 2018.
  • Wua, R., Tanga, Z., Deng, H., A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27, 51-55, 2013.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seda Kınacı 0000-0002-5334-5091

Publication Date March 25, 2022
Published in Issue Year 2022

Cite

APA Kınacı, S. (2022). General Atom-Bond-Connectivity Index Of Graphs. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18(1), 91-94. https://doi.org/10.18466/cbayarfbe.975636
AMA Kınacı S. General Atom-Bond-Connectivity Index Of Graphs. CBUJOS. March 2022;18(1):91-94. doi:10.18466/cbayarfbe.975636
Chicago Kınacı, Seda. “General Atom-Bond-Connectivity Index Of Graphs”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18, no. 1 (March 2022): 91-94. https://doi.org/10.18466/cbayarfbe.975636.
EndNote Kınacı S (March 1, 2022) General Atom-Bond-Connectivity Index Of Graphs. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18 1 91–94.
IEEE S. Kınacı, “General Atom-Bond-Connectivity Index Of Graphs”, CBUJOS, vol. 18, no. 1, pp. 91–94, 2022, doi: 10.18466/cbayarfbe.975636.
ISNAD Kınacı, Seda. “General Atom-Bond-Connectivity Index Of Graphs”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18/1 (March 2022), 91-94. https://doi.org/10.18466/cbayarfbe.975636.
JAMA Kınacı S. General Atom-Bond-Connectivity Index Of Graphs. CBUJOS. 2022;18:91–94.
MLA Kınacı, Seda. “General Atom-Bond-Connectivity Index Of Graphs”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 18, no. 1, 2022, pp. 91-94, doi:10.18466/cbayarfbe.975636.
Vancouver Kınacı S. General Atom-Bond-Connectivity Index Of Graphs. CBUJOS. 2022;18(1):91-4.