Research Article
BibTex RIS Cite

Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode

Year 2017, Volume: 13 Issue: 3, 689 - 694, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339339

Abstract

Phenolic compounds are an important class of the
antioxidants and   found in several natural
products. Research on the phenolic compounds having antioxidant properties present
in natural pruducts like fruits, spices and herbs are increased in recent
years.  Electroanalytical methods have
low detection limits very short analysis time and require less budge as well.
These advantages make the electroanalytical methods favorable and voltammetric analysis
methods are one of the preferred methods in determination of the compounds
having antioxidant properties present in different matrices. In this study, curcumin
in turmeric samples were quantitatively determined by using edge plane
pyrolytic graphite electrode (EPPG) and differential pulse voltammetry.
Electrooxidation behaviour of curcumin was also examined by using cyclic
voltammetry method. A three electrode electrochemical cell was used for
voltammetric analysis. Edge plane pyrolitic graphite (EPPG), was used as working
electrode, saturated calomel electrode (SCE) was used as reference electrode
and Pt wire electrode was used as counter electrode in the cyclic voltamety and
differential pulse voltametry studies. A linear relationship between anodic
peak current and curcumin concentration was observed between 0.325 μM to 1.95μM
at EPPG electrode with differential pulse voltammetry. Detection limit was
calculated as 0,296 μM and the method successfully applied for detection of
curcumin amount in a turmeric sample.

References

  • 1. Aggarwal, B, B , Sundaram, C , Malani, N , Ichikawa, H, Curcumin, The Indian solid gold, Advances in Experimental Medi-cine and Biology, 2007, 595, 1-75.
  • 2. Esatbeyoglu , T, Huebbe, P, Ernst, I, M, A, Chin, D, Wagner, A, E, Rimbach, G, Curcumin- From Molecule to Biological Func-tion, Angewandte Chemie International Edition, 2012, 51, 5308-5332.
  • 3. Schraufstatter, E, Bernt, H, Antibacterial Action of Curcumin and Related Compounds, Nature, 1949, 164, 456-57.
  • 4. Srimal, R, C, Dhawan, B, N, Pharmacology of diferuloyl met-hane (curcumin), a non-steroidal anti-inflammatory agent, Journal of Pharmacy and Pharmacology, 1973, 25, 447-452.
  • 5. Tayyem, R, R, Heath, D, D, Al-Delaimy, W, K, Rock, C, L, Curcumin Content of Turmeric and Curry Powders, Nutrition and Cancer, 2006, 55, 126-131.
  • 6. Smith, R, M, Witowska, B, A,Comparison of Detectors for the Determination of Curcumin in Turmeric by High-performance Liquid Chromatography, Analyst, 1984, 109, 259-261.
  • 7. Jayaprakasha, K, Rao, L,J, Sakariah, K, K, Antioxidant activi-ties of curcumin, demethoxycurcuminand bisdemethoxycurcumin, Food Chemistry, 2006, 98, 720-724.
  • 8. Li, J, Jiang, Wen, Y, Fan, J, Wu, G, Y, Zhang, C, A rapid and simple HPLC method for the determination of curcumin in rat plasma, assay development, validation and application to a phar-macokinetic study of curcumin liposome, Biomedical Chromatog-raphy, 2009, 23, 1201-1207.
  • 9. Han, Y,R, Zhu, J,J, Wang, Y,R, Wang, X,S, Liao, Y, A simple RP-HPLC method for the simultaneous determination of curcumin and its prodrug, curcumin didecanoate, in rat plasma and the appli-cation to pharmacokinetic study, Biomedical Chromatography, 2011, 25 ,1144-1149.
  • 10. Rahimi, M, Hashemi, P, Nazari, F, Cold column trapping-cloud point extraction coupled to high performance liquid chroma-tography for preconcentration and determination of curcumin in human urine, Analytica Chimica Acta, 2014, 826, 35-42.
  • 11. Nhujak, T, Saisuwan, W, Srisa-art M, Petsom, A, Microemul-sion electrokinetic chromatography for separation and analysis of curcumin in turmeric samples, Journal of Separation Science, 2006, 29, 666-676.
  • 12. Li, F, Liu, R, Yang, F, Q, Xiao, W, Chen, C, Xia, Z,N, Determi-nation of three curcumin in Curcuma longa by microemulsion electrokinetic chromatography with protective effects on the analy-tes, Analytical Methods, 2014, 6,8, 2566-2571.
  • 13. Sun, X, Gao, C,Cao, W, Yang, X, Wang, E,Capillary electrop-horesis with amperometric detection of curcumin in Chinese herbal medicine pretreated by solid-phase extraction, Journal of Chroma-tography A, 2002, 962, 117-125.
  • 14. Lechtenberg, M, Quandt, B, Nahrstedt, A, Quantitative deter-mination of curcumin in Curcuma rhizomes and rapid differentia-tion of Curcuma domestica Val. and Curcuma xanthorrhiza Roxb. by capillary electrophoresis, Phytochemical Analysis, 2004, 15, 152-158.
  • 15. Jiang, H, Timmermann, B, N, Gang, D, R, Use of liquid chro-matography-electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome, Journal of Chromatography A, 2006, 1111-1121.
  • 16. Goren, A, C, Çıkrıkçı, S, Çergel, M, Bilsel, G, Rapid quantita-tion of curcumin in turmeric via NMR and LC–tandem mass spect-rometry, Food Chemistry, 2009, 113, 1239-1242.
  • 17. Benassi, R, Ferrari, E, Lazzari, S, Spagnolo, F, Saladini, M, Theoretical study on Curcumin, A comparison of calculated spect-roscopic properties with NMR, UV–vis and IR experimental data, Journal of Molecular Structure, 2008, 892, 168-176.
  • 18. Mohan, P, R, K, Sreelakshmi, G, Muraleedharan, C,V, Joseph, R, Water soluble complexes of curcumin with cyclodextrins: Cha-racterization by FT-Raman spectroscopy, Vibrational Spectroscopy, 2012, 62, 77– 84.
  • 19. Erez, Y, Simkovitch, R, Shomer, S, Gepshtein, R, Huppert, D, Effect of Acid on the Ultraviolet–Visible Absorption and Emission Properties of Curcumin, Journal of Physical Chemistry A, 2014, 118, 872-884.
  • 20. Patra, D, Barakat, C, Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye, Spectrochimica Acta Part A, 2011, 79, 1034-1041.
  • 21. Wang, J, Analytical Electrochemistry; Wiley, VCH John Wiley & Sons Inc., 2006; pp30.
  • 22. Escarpa, A, Food electroanalysis: sense and simplicity, The Chemical Record, 2012, 12, 72-91.
  • 23. Stanic, Z, Voulgaropoulos, A, Girousi , S, Electroanalytical Study of the Antioxidant and Antitumor Agent Curcumin, Electro-analysis, 2008, 20 ( 11), 1263-1266.
  • 24. Masek, A, Chrzescijanska, E, Zaborski, M, Characteristics of curcumin using cyclic voltammetry, UV–vis,fluorescence and thermogravimetric analysis, Electrochimica Acta, 2013, 107, 441-447.
  • 25. Peng, J, Y, Nong, K, L, Cen, L, P, Electropolymerization of Acid Chrome Blue K on Glassy Carbon Electrode for the Determi-nation of Curcumin, Journal of the Chinese Chemical Society, 2012, 59, 1415-1420.
  • 26. Manaia, M, A, N, Diculescu, V, C, Gil, E, D, Oliveira-Brett, A, M, Guaicolic spices curcumin and capsaicin electrochemical oxida-tion behaviour at a glassy carbon electrode, Journal of Electroa-nalytical Chemistry, 2012, 682, 83-89.
  • 27. Wray, D, M, Batchelor-McAuley, C, Compton, R, G, Selective Curcuminoid Separation and Detection via Nickel Complexation and Adsorptive Stripping Voltammetry, Electroanalysis, 2012, 24 (12), 2244-2248.
  • 28. Ziyatdinova, G, K., Nizamova, A, M, Budnikov, H, C, Vol-tammetric Determination of Curcumin in Spices, Journal of Analy-tical Chemistry, 2012, 67, 6, 591-594.
  • 29. Gholivand, M, B, Ahmadi, F, Pourhossein, A, Adsorptive cathodic stripping voltammetric determination of curcumin in turmeric and human serum, Collection of Czechoslovak Chemical Communications, 2011, 76, 143-157.
  • 30. Lungu, A, Sandu, I, Boscornea, C, Tomas, S, Mihailciuc, C, Electrochemical Study of Curcumin and Bisdemetoxycurcumin on Activated Glassy Carbon Electrode, Revue Roumaine de Chimie, 2010, 55, 2, 109-115.
  • 31. Daniel, S, Limson, J, L, Dairam, A, Watkins, G, M, Daya, S, Through metal binding, curcumin protects against lead- and cad-mium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain, Journal of Inorga-nic Biochemistry, 2004, 98, 266-275.
  • 32. Modi, G, Pitre, K, S, Electrochemical Analysis of Natural Chemopreventive Agent (Curcumin) in Extracted Sample and Pharmaceutical Formulation, Defence Science Journal, 2010, 60 (3), 255-258.
  • 33. Chen, C, Xue, H, Mu, S, pH Dependence of reactive sites of curcumin possessing antioxidant activity and free radical scaven-ging ability studied using the electrochemical and ESR techniques: Polyaniline used as a source of the free radical, Journal of Electro-analytical Chemistry, 2014, 713, 22–27.
  • 34. Daneshgar, P, Norouzi, P, Moosavi-Movahedi, A, A., Ganjali, M, R, Haghshenas, E, Dousty, F, Farhadi, M, Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sen-sor for determination of curcumin, Journal of Applied Electroche-mistry, 2009, 39, 1983-1992.
  • 35. Arslan, E, Cakır, S, A novel palladium nanoparticles polyproli-ne-modified graphite electrode and its application for determination of curcumin, Journal of Solid State Electrochemistry, 2014, 18( 6), 1611-1620.
  • 36. Li, K, Li, Y, Yang, L, Wang, L, Y, B, The electrochemical characterization of curcumin and its selective detection in Curcuma using a graphene-modified electrode, Analytical Methods, 2014, 6, 7801-7808.
  • 37. McCreery, R,L, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chemical Reviews, 2008, 108, 2646-2687.
  • 38. Goyal, R, N, Chatterjee, S, Rana, A, R, S, A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone, Talanta, 2010, 83, 149-155.
  • 39. Patel, A, N, Tan, S, Miller, T, S, Macpherson, J,V, Unwin, P, R, Comparison and Reappraisal of Carbon Electrodes for the Vol-tammetric Detection of Dopamine, Analytical Chemistry, 2013, 85, 11755-11764.
  • 40. Banks, C,E, Moore, R, R, Davies, T, J, Compton, R, G, Investi-gation of modified basal plane pyrolytic graphite electrodes: defini-tive evidence for the electrocatalytic properties of the ends of carbon nanotubes , Chemical Communications, 2004, 16, 1804-1805.
  • 41. Kachoosangi, R, T, Compton, R, G, A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane py-rolytic graphite electrode, Analytical and Bioanalytical Chemistry, 2007, 387, 2793-2800.
  • 42. Khafaji, M, Shahrokhian, S, Ghalkhani, M, Electrochemistry of Levo-Thyroxin on Edge-Plane Pyrolytic Graphite Electrode: Appli-cation to Sensitive Analytical Determinations, Electroanalysis, 2011, 23 (8), 1875-1880.
  • 43. Banks, C, E, Compton, R,G, New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite, Analyst, 2006, 131, 15-21.
  • 44. Moore, R, R, Banks, C, Compton, R, G, Electrocatalytic detec-tion of thiols using an edge plane pyrolytic graphite electrode, Analyst, 2004, 129, 755-758.
  • 45. Banks, C, E, Compton, R, G, Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study, The Analyst, 2005, 130,1232-1239.
  • 46. Ostatna, V, Cernocka, H, Kurzatkowska, K, Palecek, E, Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes, Analytica Chimica Acta, 2012, 735 , 31–36.
  • 47. Lu, M, Compton, R, G, Voltammetric pH sensor based on an edge plane pyrolytic graphite electrode, Analyst, 2014, 139, 2397-2403.
  • 48. Wakte, P, S, Sachin, B, S, Patil, A, A, Mohato, D, M, Band, T, H, Shinde, D, B, Optimization of Microwave, Ultra-sonic and Supercritical carbon dioxide assisted Extraction techniques for Curcumin from Curcuma longa, Separation and Purification Tech-niues, 2011, 79, 50-55.
  • 49. Braga, M, E, M, Leal, P, F, Carvalho, J, E, Meireles, M, A, A, Comparison of Yield, Composition, and Antioxidant Activity of Turmeric (Curcuma longa L.) Extracts Obtained Using Various Techniques, Journal of Agricultural and Food Chemistry, 2003, 51, 6604-6611.
  • 50. Euterpio, M, A, Cavaliere, C, Capriotti, A, L,Crescenzi, C, Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizom, Analytical and Bioanalytical Chemistry, 2011, 401, 2977-2985.
  • 51. Mohankumar, S, McFarlane, J, R, An aqueous extract of Cur-cuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro, Phytotherapy Research, 2011, 25, 3, 396-401.
  • 52. Martins, R, M, Pereira, S, V, Siqueira, S, Salomao, W. F, Frei-tas, L, A, P, Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extrac, Food Research International, 2013, 50, 657-663.
  • 53. Thongchai, W, Liawruangrath, B, Liawruangrath, S, Flow injec-tion analysis of total curcumin in turmeric and total antioxidant capacity using 2,20-diphenyl-1-picrylhydrazyl assay, Food Che-mistry, 2009, 112, 494-499.
  • 54. Wang, L, Weller, C, L, Recent advances in extraction of nutra-ceuticals from plants, Trends in Food Science & Technology, 2006 , 17, 300-312.
  • 55. Vinatoru, M, An overwiev of ultrasoncally assisted extraction of bioactive principles from herbs, Ultrasonic Sonochemistry, 2001, 8, 303-313.
  • 56. Henderson, R, K, Jimenez-Gonzalez, C, Constable, D, J. C, Alston, S, R, Inglis, G, G, A, Fisher, G, Sherwood, J, Binks, S, P, Curzons, A, D, Expanding GSK’s solvent selection guide –embedding sustainability into solvent selection starting at medicinal chemistry, Green Chemistry,2011, 13, 854-862.
  • 57. Tonnesen, H, H, Karlsen, J, Studies on Curcumin and Curcu-min V. Alkaline Degradation of Curcumin, Zeitschrift für Lebensmit-tel-Untersuchung und Forschung, 1985, 180, 132-134.
  • 58. Miller, J, J, Miller, J, N, Statistics for Analytical Chemistry; Ellis Horwood Series, PTR Prentice Hall, London, 1993; pp 110-117.
  • 59. Filik, H, Avan, A, A, Aydar, S, Çetintaş, G, Determination of Acetaminophen in the Presence of Ascorbic Acid Using a Glassy Carbon Electrode Modified with Poly(Caffeic acid), International Journal of Electrochemical Science, 2014, 9, 148-160.
  • 60. Mandal, V, Mohan, Y, Hemalatha, S, Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design, Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 322-327.
Year 2017, Volume: 13 Issue: 3, 689 - 694, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339339

Abstract

References

  • 1. Aggarwal, B, B , Sundaram, C , Malani, N , Ichikawa, H, Curcumin, The Indian solid gold, Advances in Experimental Medi-cine and Biology, 2007, 595, 1-75.
  • 2. Esatbeyoglu , T, Huebbe, P, Ernst, I, M, A, Chin, D, Wagner, A, E, Rimbach, G, Curcumin- From Molecule to Biological Func-tion, Angewandte Chemie International Edition, 2012, 51, 5308-5332.
  • 3. Schraufstatter, E, Bernt, H, Antibacterial Action of Curcumin and Related Compounds, Nature, 1949, 164, 456-57.
  • 4. Srimal, R, C, Dhawan, B, N, Pharmacology of diferuloyl met-hane (curcumin), a non-steroidal anti-inflammatory agent, Journal of Pharmacy and Pharmacology, 1973, 25, 447-452.
  • 5. Tayyem, R, R, Heath, D, D, Al-Delaimy, W, K, Rock, C, L, Curcumin Content of Turmeric and Curry Powders, Nutrition and Cancer, 2006, 55, 126-131.
  • 6. Smith, R, M, Witowska, B, A,Comparison of Detectors for the Determination of Curcumin in Turmeric by High-performance Liquid Chromatography, Analyst, 1984, 109, 259-261.
  • 7. Jayaprakasha, K, Rao, L,J, Sakariah, K, K, Antioxidant activi-ties of curcumin, demethoxycurcuminand bisdemethoxycurcumin, Food Chemistry, 2006, 98, 720-724.
  • 8. Li, J, Jiang, Wen, Y, Fan, J, Wu, G, Y, Zhang, C, A rapid and simple HPLC method for the determination of curcumin in rat plasma, assay development, validation and application to a phar-macokinetic study of curcumin liposome, Biomedical Chromatog-raphy, 2009, 23, 1201-1207.
  • 9. Han, Y,R, Zhu, J,J, Wang, Y,R, Wang, X,S, Liao, Y, A simple RP-HPLC method for the simultaneous determination of curcumin and its prodrug, curcumin didecanoate, in rat plasma and the appli-cation to pharmacokinetic study, Biomedical Chromatography, 2011, 25 ,1144-1149.
  • 10. Rahimi, M, Hashemi, P, Nazari, F, Cold column trapping-cloud point extraction coupled to high performance liquid chroma-tography for preconcentration and determination of curcumin in human urine, Analytica Chimica Acta, 2014, 826, 35-42.
  • 11. Nhujak, T, Saisuwan, W, Srisa-art M, Petsom, A, Microemul-sion electrokinetic chromatography for separation and analysis of curcumin in turmeric samples, Journal of Separation Science, 2006, 29, 666-676.
  • 12. Li, F, Liu, R, Yang, F, Q, Xiao, W, Chen, C, Xia, Z,N, Determi-nation of three curcumin in Curcuma longa by microemulsion electrokinetic chromatography with protective effects on the analy-tes, Analytical Methods, 2014, 6,8, 2566-2571.
  • 13. Sun, X, Gao, C,Cao, W, Yang, X, Wang, E,Capillary electrop-horesis with amperometric detection of curcumin in Chinese herbal medicine pretreated by solid-phase extraction, Journal of Chroma-tography A, 2002, 962, 117-125.
  • 14. Lechtenberg, M, Quandt, B, Nahrstedt, A, Quantitative deter-mination of curcumin in Curcuma rhizomes and rapid differentia-tion of Curcuma domestica Val. and Curcuma xanthorrhiza Roxb. by capillary electrophoresis, Phytochemical Analysis, 2004, 15, 152-158.
  • 15. Jiang, H, Timmermann, B, N, Gang, D, R, Use of liquid chro-matography-electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome, Journal of Chromatography A, 2006, 1111-1121.
  • 16. Goren, A, C, Çıkrıkçı, S, Çergel, M, Bilsel, G, Rapid quantita-tion of curcumin in turmeric via NMR and LC–tandem mass spect-rometry, Food Chemistry, 2009, 113, 1239-1242.
  • 17. Benassi, R, Ferrari, E, Lazzari, S, Spagnolo, F, Saladini, M, Theoretical study on Curcumin, A comparison of calculated spect-roscopic properties with NMR, UV–vis and IR experimental data, Journal of Molecular Structure, 2008, 892, 168-176.
  • 18. Mohan, P, R, K, Sreelakshmi, G, Muraleedharan, C,V, Joseph, R, Water soluble complexes of curcumin with cyclodextrins: Cha-racterization by FT-Raman spectroscopy, Vibrational Spectroscopy, 2012, 62, 77– 84.
  • 19. Erez, Y, Simkovitch, R, Shomer, S, Gepshtein, R, Huppert, D, Effect of Acid on the Ultraviolet–Visible Absorption and Emission Properties of Curcumin, Journal of Physical Chemistry A, 2014, 118, 872-884.
  • 20. Patra, D, Barakat, C, Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye, Spectrochimica Acta Part A, 2011, 79, 1034-1041.
  • 21. Wang, J, Analytical Electrochemistry; Wiley, VCH John Wiley & Sons Inc., 2006; pp30.
  • 22. Escarpa, A, Food electroanalysis: sense and simplicity, The Chemical Record, 2012, 12, 72-91.
  • 23. Stanic, Z, Voulgaropoulos, A, Girousi , S, Electroanalytical Study of the Antioxidant and Antitumor Agent Curcumin, Electro-analysis, 2008, 20 ( 11), 1263-1266.
  • 24. Masek, A, Chrzescijanska, E, Zaborski, M, Characteristics of curcumin using cyclic voltammetry, UV–vis,fluorescence and thermogravimetric analysis, Electrochimica Acta, 2013, 107, 441-447.
  • 25. Peng, J, Y, Nong, K, L, Cen, L, P, Electropolymerization of Acid Chrome Blue K on Glassy Carbon Electrode for the Determi-nation of Curcumin, Journal of the Chinese Chemical Society, 2012, 59, 1415-1420.
  • 26. Manaia, M, A, N, Diculescu, V, C, Gil, E, D, Oliveira-Brett, A, M, Guaicolic spices curcumin and capsaicin electrochemical oxida-tion behaviour at a glassy carbon electrode, Journal of Electroa-nalytical Chemistry, 2012, 682, 83-89.
  • 27. Wray, D, M, Batchelor-McAuley, C, Compton, R, G, Selective Curcuminoid Separation and Detection via Nickel Complexation and Adsorptive Stripping Voltammetry, Electroanalysis, 2012, 24 (12), 2244-2248.
  • 28. Ziyatdinova, G, K., Nizamova, A, M, Budnikov, H, C, Vol-tammetric Determination of Curcumin in Spices, Journal of Analy-tical Chemistry, 2012, 67, 6, 591-594.
  • 29. Gholivand, M, B, Ahmadi, F, Pourhossein, A, Adsorptive cathodic stripping voltammetric determination of curcumin in turmeric and human serum, Collection of Czechoslovak Chemical Communications, 2011, 76, 143-157.
  • 30. Lungu, A, Sandu, I, Boscornea, C, Tomas, S, Mihailciuc, C, Electrochemical Study of Curcumin and Bisdemetoxycurcumin on Activated Glassy Carbon Electrode, Revue Roumaine de Chimie, 2010, 55, 2, 109-115.
  • 31. Daniel, S, Limson, J, L, Dairam, A, Watkins, G, M, Daya, S, Through metal binding, curcumin protects against lead- and cad-mium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain, Journal of Inorga-nic Biochemistry, 2004, 98, 266-275.
  • 32. Modi, G, Pitre, K, S, Electrochemical Analysis of Natural Chemopreventive Agent (Curcumin) in Extracted Sample and Pharmaceutical Formulation, Defence Science Journal, 2010, 60 (3), 255-258.
  • 33. Chen, C, Xue, H, Mu, S, pH Dependence of reactive sites of curcumin possessing antioxidant activity and free radical scaven-ging ability studied using the electrochemical and ESR techniques: Polyaniline used as a source of the free radical, Journal of Electro-analytical Chemistry, 2014, 713, 22–27.
  • 34. Daneshgar, P, Norouzi, P, Moosavi-Movahedi, A, A., Ganjali, M, R, Haghshenas, E, Dousty, F, Farhadi, M, Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sen-sor for determination of curcumin, Journal of Applied Electroche-mistry, 2009, 39, 1983-1992.
  • 35. Arslan, E, Cakır, S, A novel palladium nanoparticles polyproli-ne-modified graphite electrode and its application for determination of curcumin, Journal of Solid State Electrochemistry, 2014, 18( 6), 1611-1620.
  • 36. Li, K, Li, Y, Yang, L, Wang, L, Y, B, The electrochemical characterization of curcumin and its selective detection in Curcuma using a graphene-modified electrode, Analytical Methods, 2014, 6, 7801-7808.
  • 37. McCreery, R,L, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chemical Reviews, 2008, 108, 2646-2687.
  • 38. Goyal, R, N, Chatterjee, S, Rana, A, R, S, A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone, Talanta, 2010, 83, 149-155.
  • 39. Patel, A, N, Tan, S, Miller, T, S, Macpherson, J,V, Unwin, P, R, Comparison and Reappraisal of Carbon Electrodes for the Vol-tammetric Detection of Dopamine, Analytical Chemistry, 2013, 85, 11755-11764.
  • 40. Banks, C,E, Moore, R, R, Davies, T, J, Compton, R, G, Investi-gation of modified basal plane pyrolytic graphite electrodes: defini-tive evidence for the electrocatalytic properties of the ends of carbon nanotubes , Chemical Communications, 2004, 16, 1804-1805.
  • 41. Kachoosangi, R, T, Compton, R, G, A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane py-rolytic graphite electrode, Analytical and Bioanalytical Chemistry, 2007, 387, 2793-2800.
  • 42. Khafaji, M, Shahrokhian, S, Ghalkhani, M, Electrochemistry of Levo-Thyroxin on Edge-Plane Pyrolytic Graphite Electrode: Appli-cation to Sensitive Analytical Determinations, Electroanalysis, 2011, 23 (8), 1875-1880.
  • 43. Banks, C, E, Compton, R,G, New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite, Analyst, 2006, 131, 15-21.
  • 44. Moore, R, R, Banks, C, Compton, R, G, Electrocatalytic detec-tion of thiols using an edge plane pyrolytic graphite electrode, Analyst, 2004, 129, 755-758.
  • 45. Banks, C, E, Compton, R, G, Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study, The Analyst, 2005, 130,1232-1239.
  • 46. Ostatna, V, Cernocka, H, Kurzatkowska, K, Palecek, E, Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes, Analytica Chimica Acta, 2012, 735 , 31–36.
  • 47. Lu, M, Compton, R, G, Voltammetric pH sensor based on an edge plane pyrolytic graphite electrode, Analyst, 2014, 139, 2397-2403.
  • 48. Wakte, P, S, Sachin, B, S, Patil, A, A, Mohato, D, M, Band, T, H, Shinde, D, B, Optimization of Microwave, Ultra-sonic and Supercritical carbon dioxide assisted Extraction techniques for Curcumin from Curcuma longa, Separation and Purification Tech-niues, 2011, 79, 50-55.
  • 49. Braga, M, E, M, Leal, P, F, Carvalho, J, E, Meireles, M, A, A, Comparison of Yield, Composition, and Antioxidant Activity of Turmeric (Curcuma longa L.) Extracts Obtained Using Various Techniques, Journal of Agricultural and Food Chemistry, 2003, 51, 6604-6611.
  • 50. Euterpio, M, A, Cavaliere, C, Capriotti, A, L,Crescenzi, C, Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizom, Analytical and Bioanalytical Chemistry, 2011, 401, 2977-2985.
  • 51. Mohankumar, S, McFarlane, J, R, An aqueous extract of Cur-cuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro, Phytotherapy Research, 2011, 25, 3, 396-401.
  • 52. Martins, R, M, Pereira, S, V, Siqueira, S, Salomao, W. F, Frei-tas, L, A, P, Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extrac, Food Research International, 2013, 50, 657-663.
  • 53. Thongchai, W, Liawruangrath, B, Liawruangrath, S, Flow injec-tion analysis of total curcumin in turmeric and total antioxidant capacity using 2,20-diphenyl-1-picrylhydrazyl assay, Food Che-mistry, 2009, 112, 494-499.
  • 54. Wang, L, Weller, C, L, Recent advances in extraction of nutra-ceuticals from plants, Trends in Food Science & Technology, 2006 , 17, 300-312.
  • 55. Vinatoru, M, An overwiev of ultrasoncally assisted extraction of bioactive principles from herbs, Ultrasonic Sonochemistry, 2001, 8, 303-313.
  • 56. Henderson, R, K, Jimenez-Gonzalez, C, Constable, D, J. C, Alston, S, R, Inglis, G, G, A, Fisher, G, Sherwood, J, Binks, S, P, Curzons, A, D, Expanding GSK’s solvent selection guide –embedding sustainability into solvent selection starting at medicinal chemistry, Green Chemistry,2011, 13, 854-862.
  • 57. Tonnesen, H, H, Karlsen, J, Studies on Curcumin and Curcu-min V. Alkaline Degradation of Curcumin, Zeitschrift für Lebensmit-tel-Untersuchung und Forschung, 1985, 180, 132-134.
  • 58. Miller, J, J, Miller, J, N, Statistics for Analytical Chemistry; Ellis Horwood Series, PTR Prentice Hall, London, 1993; pp 110-117.
  • 59. Filik, H, Avan, A, A, Aydar, S, Çetintaş, G, Determination of Acetaminophen in the Presence of Ascorbic Acid Using a Glassy Carbon Electrode Modified with Poly(Caffeic acid), International Journal of Electrochemical Science, 2014, 9, 148-160.
  • 60. Mandal, V, Mohan, Y, Hemalatha, S, Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design, Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 322-327.
There are 60 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Göksu Basmaz This is me

Naciye Öztürk This is me

Publication Date September 30, 2017
Published in Issue Year 2017 Volume: 13 Issue: 3

Cite

APA Basmaz, G., & Öztürk, N. (2017). Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode. Celal Bayar University Journal of Science, 13(3), 689-694. https://doi.org/10.18466/cbayarfbe.339339
AMA Basmaz G, Öztürk N. Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode. CBUJOS. September 2017;13(3):689-694. doi:10.18466/cbayarfbe.339339
Chicago Basmaz, Göksu, and Naciye Öztürk. “Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode”. Celal Bayar University Journal of Science 13, no. 3 (September 2017): 689-94. https://doi.org/10.18466/cbayarfbe.339339.
EndNote Basmaz G, Öztürk N (September 1, 2017) Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode. Celal Bayar University Journal of Science 13 3 689–694.
IEEE G. Basmaz and N. Öztürk, “Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode”, CBUJOS, vol. 13, no. 3, pp. 689–694, 2017, doi: 10.18466/cbayarfbe.339339.
ISNAD Basmaz, Göksu - Öztürk, Naciye. “Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode”. Celal Bayar University Journal of Science 13/3 (September 2017), 689-694. https://doi.org/10.18466/cbayarfbe.339339.
JAMA Basmaz G, Öztürk N. Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode. CBUJOS. 2017;13:689–694.
MLA Basmaz, Göksu and Naciye Öztürk. “Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode”. Celal Bayar University Journal of Science, vol. 13, no. 3, 2017, pp. 689-94, doi:10.18466/cbayarfbe.339339.
Vancouver Basmaz G, Öztürk N. Determination of Curcumin in Turmeric Sample Using Edge Plane Pyrolytic Graphite Electrode. CBUJOS. 2017;13(3):689-94.