Research Article
BibTex RIS Cite

Fungal ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması ve Kağıt Üretiminde Kullanımı

Year 2017, Volume: 13 Issue: 3, 823 - 828, 30.09.2017

Abstract

Lipaz,
gıda teknolojisi, klinik ve endüstriyel kimya gibi birçok biyoteknolojik alanda
yaygın olarak kullanılan bir enzimdir. Endüstriyel alanda kullanılan lipazların
çoğu funguslardan elde edilir. Bu enzimler ticari olarak satılmaya uygun olup
saflaştırılır ve immobilize hale getirilir. Ancak tüm bu işlemler ürünün
maliyetini arttırdığından son ürün haline dönüşen lipaz enzimi oldukça
pahalıdır. Kağıt üretiminde karşılaşılan problemlerin en önemlilerinden biri
odun ekstraktiflerinin kağıt hamuru ve kağıtta kaliteyi düşürmesi ve atık
sularda toksisite oluşturmasıdır. Bu yapışkan bileşiklerden biyolojik yolla
kurtulmak amacıyla lipaz enzimi kullanılabilir. Bu çalışmada, çürükçül bir
fungus olan Phanerochaete chrysosporium
ile bir halofilik arke olan Haloarcula
hispanica
’dan elde edilen ekstraselüler lipazların aktivite tayini yapılmış
ve geri dönüşümlü karton üretimi proseslerinden alınan kağıt hamuru numunelerine
uygulanmıştır. Aseton ekstraksiyonuna tabi tutulan kağıt hamuru numunelerine
nem analizi yapıldıktan sonra lipaz eklenmiştir. Hidrolizi daha detaylı ölçmek
amacıyla asit değeri analizi yapılarak serbest yağ asidi miktarını belirlemek
amacıyla gaz kromatografi uygulanmıştır. Sonuçlar, P. chrysosporium ve H. hispanica’dan
düşük maliyetle elde edilen lipaz enzimlerinin herhangi bir saflaştırma veya
immobilizasyon yapılmaksızın aktivite gösterdiğini ve lipofilik bileşiklerin
hidrolizinde etkin biçimde kullanılabileceğini göstermiştir.

References

  • 1. Rousu, P.; Rousu, P.; Anttila, J. Sustainable Pulp Production from Agricultural Waste, Resources, Conservation, and Recycling, 2002; 35, 85-103.
  • 2. Hoekstra, P.M.; May, O.W. Developments in the Control of Stickies. Recycling Paper: From Fiber to Finished Product. Tappi Journal, 1990; 2, 446-450.
  • 3. Kenny, R.M.; Engstrom, G.G. New Technology for Stickies. Recycling Paper: From Fiber to Finished Product. Tappi Journal 1990; 2, 531-535.
  • 4. Pommier, J.-C.; Fuentes J.-L.; Goma G. Using Enzymes to Improve the Process and the Product Quality in the Recycled Paper Industry. I: The Basis Laboratory Work. Tappi Journal 1989; 72, 187-191.
  • 5. Bajpai, P.K. Solving the Problems of Recycled Fiber Proces-sing with Enzymes. Bioresources, 2010; 5, 1311-1325.
  • 6. Pala, H.; Lemos, M.A.; Mota, M.; Gama, F.M. Enzymatic Upgrade of Old Paperboard Containers, Enzyme and Microbial Technology. 2001; 29, 274-279. 7. Beg, Q.K.; Kapoor, M.; Mahajan, L.; Hoondal, G.S.; Microbial Xylanases and Their Industrial Applications: A Review. Applied MicroBiology and Biotechnology, 2001; 56, 326-338.
  • 8. Gutierrez, A.; del Rio, J.C.; Martinez, M.J.; Martinez, A.T. The Biotechnological Control of Pitch in Paper Pulp Manufacturing. Trends in biotechnology, 2001; 19, 340-348.
  • 9. Martinez-Inigo, M.J.; Gutierrez , A.; del Rio, J.C.; Martinez, M.J.; Martinez, A.T. Time Course of Fungal Removal of Lipophilic Extractives From Eucalyptus globulus Wood. Journal of biotech-nology, 2000; 84, 119-126.
  • 10. Fischer, K.; Puchinger, L.; Schloffer, K.; Kreiner, W.; Messner, K. Enzymatic Pitch Control of Sulfite Pulp On Pilot Scale. Journal of biotechnology, 1993; 27, 341-348.
  • 11. Gutierrez, A.; Romero, J.; del Rio, J.C. Lipophilic Extractives in Process Waters During Manufacturing of Totally Free Kraft Pulp from Eucalypt Wood. Chemosphere, 2001; 44, 1237-1242.
  • 12. del Rio, J.C.; Romero, J.; Gutierrez, A. Analysis of Pitch Depo-sits Produced in Kraft Pulp Mills Using a Totally Chlorine Free Bleaching Sequence, Journal of Chromatogrphy A, 2000; 874, 235-245.
  • 13. Hata, K.; Matsukura, M.; Taneda, H.; Fujita, Y. Mill-Scale Application of Enzymatic Pitch Control During Paper Production. ACS Publications, Chapter 22, 1996; 280-296.
  • 14. del Rio, J.C.; Gutierrez, A.; Gonzalez-Vila, F.J. Analysis of Impurities Occurring in a Totally Chlorine Free-Bleached Kraft Pulp, Journal of Chromatogrphy A, 1999; 830, 227-232.
  • 15. Gutierrez, A.; del Rio, J.C.; Martinez, A.T. Fungi and Their Enzymes for Pitch Control in the Pulp and Paper Industry Indust-rial Applications, 2nd Edition, The Mycota X, M. Hofrichter (Ed.), © Springer-Verlag Berlin Heidelberg. 2010.
  • 16. Adav, S.S.; Ravindran, A.; Sze, S.K. Quantitative Proteomic Analysis of Lignocellulolytic Enzymes by Phanerochaete chrysos-porium on Different Lignocellulosic Biomass. Journal of prote-omics, 2012; 75, 1493-1504.
  • 17. Asther, M.; Lesage, L.; Drapron, R.; Corrieu, G.; Odier, E. Phospholipid and Fatty Acid Enrichment of Phanerochaete Chry-sosporium INA-12 in Relation to Ligninase Production. Applied microbiology and biotechnology, 1988; 27, 393-398.
  • 18. Attar, A.; Ogan, A.; Yucel, S.; Turan, K. The potential of Arc-haeosomes as Carriers of pDNA into Mammalian Cells. Artificial Cells Nanomedicine Biotechnology, 2016; 44, 710-716.
  • 19. Özgen, M.; Attar, A.; Elalmış, Y.; Birbir, M.; Yücel, S. Enzymatic Activity of a Novel Halotolerant Lipase from Haloarcu-la hispanica 2TK2. Polish Congresses on Chemical Technology, 2016; 18, 20-25.
  • 20. Wymelenberg, A. V.; Minges, P.; Sabat, G.; Martinez, D.; Aerts, A.; Salamov, A.; Dosoretz, C. Computational Analysis of the Phanerochaete chrysosporium v2. 0 Genome Database and Mass Spectrometry Identification of Peptides in Ligninolytic Cultu-res Reveal Complex Mixtures of Secreted Proteins. Fungal Genet-ics and Biology. 2006; 43, 343-356.
  • 21. Striby, L.; Lafont, R.; Goutx, M. Improvement in the Iatros-can Thin-Layer Chromatographic-Flame Ionisation Detection Analysis of Marine Lipids. Separation and Quantitation of Mono-acylglycerols and Diacylglycerols in Standards and Natural Samp-les. Journal of Chromatography A, 1999; 849, 371-380.

Production of Fungal and Archaeal Lipases, Comparison of their Enzymatic Activities and Utilization in Paper Production

Year 2017, Volume: 13 Issue: 3, 823 - 828, 30.09.2017

Abstract

Lipases are used extensively in biotechnological
fields such as food technology, clinical and industrial chemistry. Many
industrially used lipases are prepared from fungi. Hence, their consideration
as industrially relevant enzymes includes purification and immobilization
processes which means an increase in the price of the final product. One of the
most important problems in paper production is wood extractives so-called pitch
that cause low quality pulp and paper, and create waste water toxicity. Lipase could
be used for the hydrolysis of those sticky compounds as a biological approach.
In this study, extracellular lipases of a fungus Phanerochaete chrysosporium and a halophilic archaeon Haloarcula hispanica were used in pitch
component and sticky material degradation in recycled paper production in
comparison with controls. Acetone extraction was applied on the samples. After
the determination of the enzyme activity lipases were added to the pulp
samples. The amount of free fatty acids were determined by acid value analysis
in order to get a better quantification of the hydrolysis. Also gas
chromatography was applied. The results demonstrated that
P. chrysosporium and H.
hispanica
extracellular
lipases have substantially high enzyme activity without any purification or
immobilization processes and can be efficiently used for the hydrolysis of
lipophilic compounds in an environmentally friendly approach.

References

  • 1. Rousu, P.; Rousu, P.; Anttila, J. Sustainable Pulp Production from Agricultural Waste, Resources, Conservation, and Recycling, 2002; 35, 85-103.
  • 2. Hoekstra, P.M.; May, O.W. Developments in the Control of Stickies. Recycling Paper: From Fiber to Finished Product. Tappi Journal, 1990; 2, 446-450.
  • 3. Kenny, R.M.; Engstrom, G.G. New Technology for Stickies. Recycling Paper: From Fiber to Finished Product. Tappi Journal 1990; 2, 531-535.
  • 4. Pommier, J.-C.; Fuentes J.-L.; Goma G. Using Enzymes to Improve the Process and the Product Quality in the Recycled Paper Industry. I: The Basis Laboratory Work. Tappi Journal 1989; 72, 187-191.
  • 5. Bajpai, P.K. Solving the Problems of Recycled Fiber Proces-sing with Enzymes. Bioresources, 2010; 5, 1311-1325.
  • 6. Pala, H.; Lemos, M.A.; Mota, M.; Gama, F.M. Enzymatic Upgrade of Old Paperboard Containers, Enzyme and Microbial Technology. 2001; 29, 274-279. 7. Beg, Q.K.; Kapoor, M.; Mahajan, L.; Hoondal, G.S.; Microbial Xylanases and Their Industrial Applications: A Review. Applied MicroBiology and Biotechnology, 2001; 56, 326-338.
  • 8. Gutierrez, A.; del Rio, J.C.; Martinez, M.J.; Martinez, A.T. The Biotechnological Control of Pitch in Paper Pulp Manufacturing. Trends in biotechnology, 2001; 19, 340-348.
  • 9. Martinez-Inigo, M.J.; Gutierrez , A.; del Rio, J.C.; Martinez, M.J.; Martinez, A.T. Time Course of Fungal Removal of Lipophilic Extractives From Eucalyptus globulus Wood. Journal of biotech-nology, 2000; 84, 119-126.
  • 10. Fischer, K.; Puchinger, L.; Schloffer, K.; Kreiner, W.; Messner, K. Enzymatic Pitch Control of Sulfite Pulp On Pilot Scale. Journal of biotechnology, 1993; 27, 341-348.
  • 11. Gutierrez, A.; Romero, J.; del Rio, J.C. Lipophilic Extractives in Process Waters During Manufacturing of Totally Free Kraft Pulp from Eucalypt Wood. Chemosphere, 2001; 44, 1237-1242.
  • 12. del Rio, J.C.; Romero, J.; Gutierrez, A. Analysis of Pitch Depo-sits Produced in Kraft Pulp Mills Using a Totally Chlorine Free Bleaching Sequence, Journal of Chromatogrphy A, 2000; 874, 235-245.
  • 13. Hata, K.; Matsukura, M.; Taneda, H.; Fujita, Y. Mill-Scale Application of Enzymatic Pitch Control During Paper Production. ACS Publications, Chapter 22, 1996; 280-296.
  • 14. del Rio, J.C.; Gutierrez, A.; Gonzalez-Vila, F.J. Analysis of Impurities Occurring in a Totally Chlorine Free-Bleached Kraft Pulp, Journal of Chromatogrphy A, 1999; 830, 227-232.
  • 15. Gutierrez, A.; del Rio, J.C.; Martinez, A.T. Fungi and Their Enzymes for Pitch Control in the Pulp and Paper Industry Indust-rial Applications, 2nd Edition, The Mycota X, M. Hofrichter (Ed.), © Springer-Verlag Berlin Heidelberg. 2010.
  • 16. Adav, S.S.; Ravindran, A.; Sze, S.K. Quantitative Proteomic Analysis of Lignocellulolytic Enzymes by Phanerochaete chrysos-porium on Different Lignocellulosic Biomass. Journal of prote-omics, 2012; 75, 1493-1504.
  • 17. Asther, M.; Lesage, L.; Drapron, R.; Corrieu, G.; Odier, E. Phospholipid and Fatty Acid Enrichment of Phanerochaete Chry-sosporium INA-12 in Relation to Ligninase Production. Applied microbiology and biotechnology, 1988; 27, 393-398.
  • 18. Attar, A.; Ogan, A.; Yucel, S.; Turan, K. The potential of Arc-haeosomes as Carriers of pDNA into Mammalian Cells. Artificial Cells Nanomedicine Biotechnology, 2016; 44, 710-716.
  • 19. Özgen, M.; Attar, A.; Elalmış, Y.; Birbir, M.; Yücel, S. Enzymatic Activity of a Novel Halotolerant Lipase from Haloarcu-la hispanica 2TK2. Polish Congresses on Chemical Technology, 2016; 18, 20-25.
  • 20. Wymelenberg, A. V.; Minges, P.; Sabat, G.; Martinez, D.; Aerts, A.; Salamov, A.; Dosoretz, C. Computational Analysis of the Phanerochaete chrysosporium v2. 0 Genome Database and Mass Spectrometry Identification of Peptides in Ligninolytic Cultu-res Reveal Complex Mixtures of Secreted Proteins. Fungal Genet-ics and Biology. 2006; 43, 343-356.
  • 21. Striby, L.; Lafont, R.; Goutx, M. Improvement in the Iatros-can Thin-Layer Chromatographic-Flame Ionisation Detection Analysis of Marine Lipids. Separation and Quantitation of Mono-acylglycerols and Diacylglycerols in Standards and Natural Samp-les. Journal of Chromatography A, 1999; 849, 371-380.
There are 20 citations in total.

Details

Journal Section Articles
Authors

Azade Attar

Publication Date September 30, 2017
Published in Issue Year 2017 Volume: 13 Issue: 3

Cite

APA Attar, A. (2017). Fungal ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması ve Kağıt Üretiminde Kullanımı. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(3), 823-828. https://doi.org/10.18466/cbayarfbe.339543
AMA Attar A. Fungal ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması ve Kağıt Üretiminde Kullanımı. CBUJOS. September 2017;13(3):823-828. doi:10.18466/cbayarfbe.339543
Chicago Attar, Azade. “Fungal Ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması Ve Kağıt Üretiminde Kullanımı”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13, no. 3 (September 2017): 823-28. https://doi.org/10.18466/cbayarfbe.339543.
EndNote Attar A (September 1, 2017) Fungal ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması ve Kağıt Üretiminde Kullanımı. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13 3 823–828.
IEEE A. Attar, “Fungal ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması ve Kağıt Üretiminde Kullanımı”, CBUJOS, vol. 13, no. 3, pp. 823–828, 2017, doi: 10.18466/cbayarfbe.339543.
ISNAD Attar, Azade. “Fungal Ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması Ve Kağıt Üretiminde Kullanımı”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13/3 (September 2017), 823-828. https://doi.org/10.18466/cbayarfbe.339543.
JAMA Attar A. Fungal ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması ve Kağıt Üretiminde Kullanımı. CBUJOS. 2017;13:823–828.
MLA Attar, Azade. “Fungal Ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması Ve Kağıt Üretiminde Kullanımı”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 3, 2017, pp. 823-8, doi:10.18466/cbayarfbe.339543.
Vancouver Attar A. Fungal ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması ve Kağıt Üretiminde Kullanımı. CBUJOS. 2017;13(3):823-8.