Research Article
BibTex RIS Cite
Year 2017, Volume: 13 Issue: 4, 851 - 861, 29.12.2017
https://doi.org/10.18466/cbayarfbe.339858

Abstract

References

  • [1] https://en.wikipedia.org/wiki/Quinoline [2] Wang L.Y., Chen Q.-W., Zhai G.-H., Wen Z.-Y., Z.-X. Zhang, Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus, Dyes Pigm., 2007; 72, 357–362. [3] Dahule H.K., Thejokalyani N., Dhoble S.J., Novel Br-DPQ blue light-emitting phosphors for OLED, Luminescence, 2014; 4, 405–410. [4] Ciobotaru I.C., Polosan S., Ciobotaru C.C., Dual emitter IrQ(ppy)2 for OLED applications: Synthesis and spectroscopic analysis, J. Lumin., 2014; 145, 259– 262. [5] Camargo H., Paolini T.B., Niyama E., Brito H.F., Cremona M., New rare-earth quinolinate complexes for organic light-emitting devices, Thin Solid Films, 2013; 528, 36–41. [6] Dereli O., Erdogdu Y., Gulluoglu M.T., Turkkan E., Ozmen A., Sundaraganesan N., Vibrational spectral and quantum chemical investigations of tert-butyl-hydroquinone, J. Mol. Struct., 2012; 1012, 168-176. [7] Dereli O., Sudha S. and Sundaraganesan N., Molecular structure and vibrational spectra of 4-phenylsemicarbazide by density functional method, J. Mol. Struct., 2011; 994, 379-386. [8] Yurdakul Ş., Badoglu S., An FT-IR and DFT study of the free and solvated 4-(imidazol-1-yl)phenol, Spectrochim. Acta Part A., 2015; 150, 614-622. [9] Yurdakul Ş., Badoglu S., Ozkurt L., An experimental and theoretical investigation of free Oxazole in conjunction with the DFT analysis of Oxazole ⋯(H2O)ncomplexes, Spectrochim. Acta Part A., 2016; 162, 48-60. [10] Erdogdu Y., Investigations of FT-IR, FT-Raman, FT-NMR spectra and quantum chemical computations of Esculetin molecule, Spectrochim. Acta Part A., 2013; 106, 25-33. [11] Erdogdu Y., Unsalan O., Gulluoglu M.T., FT- Raman, FT-IR spectral and DFT studies on 6, 8- dichloroflavone and 6, 8-dibromoflavone, J. Raman Spec., 2010; 41, 820-828. [12] Subashchandrabose S., Saleem H., Erdogdu Y., Dereli Ö., Thanikachalam V., Jayabharathi J., Structural, vibrational and hyperpolarizability calculation of (E)-2-(2-hydroxybenzylideneamino)- 3-methylbutanoic acid, Spectrochim. Acta Part A., 2012; 86, 231-241. [13] Sajan D., Erdogdu Y., Kuruvilla T., Hubert Joe I.,Vibrational spectra and first-order molecular hyperpolarizabilities of p-hydroxybenzaldehyde dimer, J. Mol. Struct, 2010; 983,12-21. [14] Erdogdu Y., Unsalan O., Sajan D., Gulluoglu M.T., Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations, Spectrochim. Acta Part A., 2010; 76, 130-136. [15] Erdoğdu Y., Güllüoğlu M.T., Yurdakul Ş., Molecular structure and vibrational spectra of 1,3-bis(4-piperidyl)propane by quantum chemical calculations, J. Mol. Struct., 2008; 889, 361-370. [16] Frosch T., Schmitt M., J. Popp, Raman spectroscopic investigation of the antimalarial agent mefloquine, Anal. Bioanal. Chem., 2007; 387, 1749–1757. [17] Frosch T., Popp J., Structural analysis of the antimalarial drug halofantrine by means of Raman spectrocopy and density functional theory calculations, J. Biomed. Opt. 2010; 15 (4), 041516. doi:10.1117/1.3432656 [18] Frosch T., Schmitt M., Schenzel K., Faber J.H., Bringmann G., Kiefer W., Popp J., In vivo localization and identification of the antiplasmodial alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by a combination of fluorescence, near infrared Fourier transform Raman microscopy, and density functional theory calculations, Biopolymers, 2006; 82, 295–300. [19] Frosch T., Küstner B., Schlücker S., Szeghalmi A., Schmitt M., Kiefer W., Popp J., In vitro polarization-resolved resonance Raman studies of the interaction of hematin with the antimalarial drug chloroquine, J. Raman Spectrosc. 2004; 35, 819–821. [20] Ulahannan R.T., Panicker C.Y., Varghese H.T., Van Alsenoy C., Musiol R., Jampilek J., Anto P.L., Spectroscopic (FT-IR, FT-Raman) investigations and quantum chemical calculations of 4-hydroxy-2-oxo-1,2-dihydroquinoline-7-carboxylic acid, Spectrochim. Acta A, 2014; 121, 404–414. [21] Frosch T., Popp J., Relationship between molecular structure and Raman spectra of quinolones, J. Mol. Struct., 2009; 924–926, 301–308. [22] Cînta-Pînzaru S., Peica N., Küstner B., Schlücker S., Schmitt M., Frosch T., Faber J.H., Bringmann G., Popp J., FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin, J. Raman Spectrosc., 2006; 37, 326–334. [23] Frosch T., Schmitt M., Bringmann G., Kiefer W., Popp J., Structural Analysis of the Anti-Malaria Active Agent Chloroquine under Physiological Conditions, J. Phys. Chem. B, 2007; 111, 1815–1822. [24] Frosch T., Schmitt M., Popp J., In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark, J. Phys. Chem. B, 2007; 111, 4171–4177. [25] Fazal E., Jasinski J., Anderson B., Kaur M., Nagarajan S., Sudha B., Synthesis, Crystal and Molecular Structure Studies and DFT Calculations of Phenyl Quinoline-2-Carboxylate and 2- Methoxyphenyl Quinoline-2-Carboxylate; Two New Quinoline-2 Carboxylic DerivativesCrystals., 2015; 5, 100- 115. [26] Diwaker C.S., Chidan Kumar A., Chandraju Kumar S., Spectroscopic (FT-IR, 1H, 13C NMR and UV–vis) characterization and DFT studies of novel 8-((4-(methylthio)-2,5-diphenylfuran-3-l)methoxy) quinolone, Spectrochim. Acta Part A., 2015; 150, 602–613. [27] Ulahannan R.T., Panicker C.Y., Varghese H.T., Musiol R., Jampilek J., Alsenoy C.V., War J.A., Manojkumar T.K., Vibrational spectroscopic studies and molecular docking study of 2-[(E)-2-phenylethenyl]quinoline-5-carboxylic acid Spectrochim. Acta Part A., 2015; 150, 190–199. [28] Kulkarni A., King C., Butcher R.J., Fortunak .M.D., 4,7-Di¬chloro¬quinolone, Acta Cryst., 2012; E68, 1498. [29] Pereira G.R., et al., 7-Chloroquinolinotriazoles: Synthesis by the azide–alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies, Eur. J. Med. Chem., 2014; 73, 295–309. [30] Frisch, M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al., Gaussian 09, revision A.2. Wallingford CT: Gaussian, Inc., 2009. [31] Pulay P., Baker J., Wolinski K., Green Acres Road Suite A Fayettevile, Arkansas, 72703, USA, 2013. [32] Thanikachalam V., Periyanayagasamy V., Jayabharathi J., Manikandan G., Saleem H., Subashchandrabose S., Erdogdu Y., FT-Raman, FT-IR spectral and DFT studies on (E)-1-4-nitrobenzylidenethiocarbonohydrazide, Spectrochim. Acta Part A., 2012; 87, 86-95. [33] Roeges N.P.G., A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994. [34] Güllüoğlu M.T., Erdogdu Y., Yurdakul Ş., Molecular structure and vibrational spectra of piperidine and 4-methylpiperidine by density functional theory and ab initio Hartree–Fock calculations, J. Mol. Struct., 2007; 834, 540-547. [35] Erdogdu Y., Güllüoğlu M.T., Analysis of vibrational spectra of 2 and 3-methylpiperidine based on density functional theory calculations, Spectrochim. Acta Part A., 2009; 74, 162-167. [36] http://srdata.nist.gov/cccbdb/vibscalejust.asp [37] DitchfieldJ R.. J. Chem. Phys., 1972; 56, 5688 [38] Wolinski K., Hinton J.F., PulayP., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc., 1990; 112 (23), 8251-8260. [39] Azizi N., Rostami A.A., Godarzian A., 29Si NMR Chemical Shift Calculation for Silicate Species by Gaussian Software, J. Phys. Soc. Jpn., 2005; 74, 1609-1620. [40] Rohlfing M., Leland C., Allen C., Ditchfield R., Proton and carbon-13 chemical shifts: Comparison between theory and experiment, Chem. Phys., 1984; 87, 9-15. [41] Chesnut D., Phung C., Nuclear magnetic resonance chemical shifts using optimized geometries, J. Chem. Phys. 1989; 91, 6238-6245.

Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline

Year 2017, Volume: 13 Issue: 4, 851 - 861, 29.12.2017
https://doi.org/10.18466/cbayarfbe.339858

Abstract

This work deals with the
spectroscopic properties (FT-IR, FT-Raman and NMR), structural and some
electronic properties as well as theoretical calculations of
4-amino-2-methyl-8-(trifluoromethyl) quinoline (AMTQ) molecule. The vibrational, structural and some electronic properties
observations of the AMTQ were reported, which is investigated using some
spectral
methods and DFT calculations. FT-IR and FT-Raman
spectra were obtained for AMTQ at room temperature in the region 4000 cm-1-
400 cm-1 and 3500-50 cm-1, respectively. 
In the DFT calculations, the B3LYP
functional with cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets was applied to carry
out the quantum mechanical calculations of the spectroscopic, structural and
some electronic properties of AMTQ. FT-IR and FT-Raman spectra were interpreted
with the by using of normal coordinate analysis based on scaled quantum
mechanical force field. The present work expands our understanding of the both
the vibrational and structural properties as well as some electronic properties
of the AMTQ by means of the theoretical and experimental methods.

References

  • [1] https://en.wikipedia.org/wiki/Quinoline [2] Wang L.Y., Chen Q.-W., Zhai G.-H., Wen Z.-Y., Z.-X. Zhang, Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus, Dyes Pigm., 2007; 72, 357–362. [3] Dahule H.K., Thejokalyani N., Dhoble S.J., Novel Br-DPQ blue light-emitting phosphors for OLED, Luminescence, 2014; 4, 405–410. [4] Ciobotaru I.C., Polosan S., Ciobotaru C.C., Dual emitter IrQ(ppy)2 for OLED applications: Synthesis and spectroscopic analysis, J. Lumin., 2014; 145, 259– 262. [5] Camargo H., Paolini T.B., Niyama E., Brito H.F., Cremona M., New rare-earth quinolinate complexes for organic light-emitting devices, Thin Solid Films, 2013; 528, 36–41. [6] Dereli O., Erdogdu Y., Gulluoglu M.T., Turkkan E., Ozmen A., Sundaraganesan N., Vibrational spectral and quantum chemical investigations of tert-butyl-hydroquinone, J. Mol. Struct., 2012; 1012, 168-176. [7] Dereli O., Sudha S. and Sundaraganesan N., Molecular structure and vibrational spectra of 4-phenylsemicarbazide by density functional method, J. Mol. Struct., 2011; 994, 379-386. [8] Yurdakul Ş., Badoglu S., An FT-IR and DFT study of the free and solvated 4-(imidazol-1-yl)phenol, Spectrochim. Acta Part A., 2015; 150, 614-622. [9] Yurdakul Ş., Badoglu S., Ozkurt L., An experimental and theoretical investigation of free Oxazole in conjunction with the DFT analysis of Oxazole ⋯(H2O)ncomplexes, Spectrochim. Acta Part A., 2016; 162, 48-60. [10] Erdogdu Y., Investigations of FT-IR, FT-Raman, FT-NMR spectra and quantum chemical computations of Esculetin molecule, Spectrochim. Acta Part A., 2013; 106, 25-33. [11] Erdogdu Y., Unsalan O., Gulluoglu M.T., FT- Raman, FT-IR spectral and DFT studies on 6, 8- dichloroflavone and 6, 8-dibromoflavone, J. Raman Spec., 2010; 41, 820-828. [12] Subashchandrabose S., Saleem H., Erdogdu Y., Dereli Ö., Thanikachalam V., Jayabharathi J., Structural, vibrational and hyperpolarizability calculation of (E)-2-(2-hydroxybenzylideneamino)- 3-methylbutanoic acid, Spectrochim. Acta Part A., 2012; 86, 231-241. [13] Sajan D., Erdogdu Y., Kuruvilla T., Hubert Joe I.,Vibrational spectra and first-order molecular hyperpolarizabilities of p-hydroxybenzaldehyde dimer, J. Mol. Struct, 2010; 983,12-21. [14] Erdogdu Y., Unsalan O., Sajan D., Gulluoglu M.T., Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations, Spectrochim. Acta Part A., 2010; 76, 130-136. [15] Erdoğdu Y., Güllüoğlu M.T., Yurdakul Ş., Molecular structure and vibrational spectra of 1,3-bis(4-piperidyl)propane by quantum chemical calculations, J. Mol. Struct., 2008; 889, 361-370. [16] Frosch T., Schmitt M., J. Popp, Raman spectroscopic investigation of the antimalarial agent mefloquine, Anal. Bioanal. Chem., 2007; 387, 1749–1757. [17] Frosch T., Popp J., Structural analysis of the antimalarial drug halofantrine by means of Raman spectrocopy and density functional theory calculations, J. Biomed. Opt. 2010; 15 (4), 041516. doi:10.1117/1.3432656 [18] Frosch T., Schmitt M., Schenzel K., Faber J.H., Bringmann G., Kiefer W., Popp J., In vivo localization and identification of the antiplasmodial alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by a combination of fluorescence, near infrared Fourier transform Raman microscopy, and density functional theory calculations, Biopolymers, 2006; 82, 295–300. [19] Frosch T., Küstner B., Schlücker S., Szeghalmi A., Schmitt M., Kiefer W., Popp J., In vitro polarization-resolved resonance Raman studies of the interaction of hematin with the antimalarial drug chloroquine, J. Raman Spectrosc. 2004; 35, 819–821. [20] Ulahannan R.T., Panicker C.Y., Varghese H.T., Van Alsenoy C., Musiol R., Jampilek J., Anto P.L., Spectroscopic (FT-IR, FT-Raman) investigations and quantum chemical calculations of 4-hydroxy-2-oxo-1,2-dihydroquinoline-7-carboxylic acid, Spectrochim. Acta A, 2014; 121, 404–414. [21] Frosch T., Popp J., Relationship between molecular structure and Raman spectra of quinolones, J. Mol. Struct., 2009; 924–926, 301–308. [22] Cînta-Pînzaru S., Peica N., Küstner B., Schlücker S., Schmitt M., Frosch T., Faber J.H., Bringmann G., Popp J., FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin, J. Raman Spectrosc., 2006; 37, 326–334. [23] Frosch T., Schmitt M., Bringmann G., Kiefer W., Popp J., Structural Analysis of the Anti-Malaria Active Agent Chloroquine under Physiological Conditions, J. Phys. Chem. B, 2007; 111, 1815–1822. [24] Frosch T., Schmitt M., Popp J., In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark, J. Phys. Chem. B, 2007; 111, 4171–4177. [25] Fazal E., Jasinski J., Anderson B., Kaur M., Nagarajan S., Sudha B., Synthesis, Crystal and Molecular Structure Studies and DFT Calculations of Phenyl Quinoline-2-Carboxylate and 2- Methoxyphenyl Quinoline-2-Carboxylate; Two New Quinoline-2 Carboxylic DerivativesCrystals., 2015; 5, 100- 115. [26] Diwaker C.S., Chidan Kumar A., Chandraju Kumar S., Spectroscopic (FT-IR, 1H, 13C NMR and UV–vis) characterization and DFT studies of novel 8-((4-(methylthio)-2,5-diphenylfuran-3-l)methoxy) quinolone, Spectrochim. Acta Part A., 2015; 150, 602–613. [27] Ulahannan R.T., Panicker C.Y., Varghese H.T., Musiol R., Jampilek J., Alsenoy C.V., War J.A., Manojkumar T.K., Vibrational spectroscopic studies and molecular docking study of 2-[(E)-2-phenylethenyl]quinoline-5-carboxylic acid Spectrochim. Acta Part A., 2015; 150, 190–199. [28] Kulkarni A., King C., Butcher R.J., Fortunak .M.D., 4,7-Di¬chloro¬quinolone, Acta Cryst., 2012; E68, 1498. [29] Pereira G.R., et al., 7-Chloroquinolinotriazoles: Synthesis by the azide–alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies, Eur. J. Med. Chem., 2014; 73, 295–309. [30] Frisch, M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al., Gaussian 09, revision A.2. Wallingford CT: Gaussian, Inc., 2009. [31] Pulay P., Baker J., Wolinski K., Green Acres Road Suite A Fayettevile, Arkansas, 72703, USA, 2013. [32] Thanikachalam V., Periyanayagasamy V., Jayabharathi J., Manikandan G., Saleem H., Subashchandrabose S., Erdogdu Y., FT-Raman, FT-IR spectral and DFT studies on (E)-1-4-nitrobenzylidenethiocarbonohydrazide, Spectrochim. Acta Part A., 2012; 87, 86-95. [33] Roeges N.P.G., A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994. [34] Güllüoğlu M.T., Erdogdu Y., Yurdakul Ş., Molecular structure and vibrational spectra of piperidine and 4-methylpiperidine by density functional theory and ab initio Hartree–Fock calculations, J. Mol. Struct., 2007; 834, 540-547. [35] Erdogdu Y., Güllüoğlu M.T., Analysis of vibrational spectra of 2 and 3-methylpiperidine based on density functional theory calculations, Spectrochim. Acta Part A., 2009; 74, 162-167. [36] http://srdata.nist.gov/cccbdb/vibscalejust.asp [37] DitchfieldJ R.. J. Chem. Phys., 1972; 56, 5688 [38] Wolinski K., Hinton J.F., PulayP., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc., 1990; 112 (23), 8251-8260. [39] Azizi N., Rostami A.A., Godarzian A., 29Si NMR Chemical Shift Calculation for Silicate Species by Gaussian Software, J. Phys. Soc. Jpn., 2005; 74, 1609-1620. [40] Rohlfing M., Leland C., Allen C., Ditchfield R., Proton and carbon-13 chemical shifts: Comparison between theory and experiment, Chem. Phys., 1984; 87, 9-15. [41] Chesnut D., Phung C., Nuclear magnetic resonance chemical shifts using optimized geometries, J. Chem. Phys. 1989; 91, 6238-6245.
There are 1 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Tevfik Raci Sertbakan

Publication Date December 29, 2017
Published in Issue Year 2017 Volume: 13 Issue: 4

Cite

APA Sertbakan, T. R. (2017). Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline. Celal Bayar University Journal of Science, 13(4), 851-861. https://doi.org/10.18466/cbayarfbe.339858
AMA Sertbakan TR. Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline. CBUJOS. December 2017;13(4):851-861. doi:10.18466/cbayarfbe.339858
Chicago Sertbakan, Tevfik Raci. “Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline”. Celal Bayar University Journal of Science 13, no. 4 (December 2017): 851-61. https://doi.org/10.18466/cbayarfbe.339858.
EndNote Sertbakan TR (December 1, 2017) Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline. Celal Bayar University Journal of Science 13 4 851–861.
IEEE T. R. Sertbakan, “Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline”, CBUJOS, vol. 13, no. 4, pp. 851–861, 2017, doi: 10.18466/cbayarfbe.339858.
ISNAD Sertbakan, Tevfik Raci. “Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline”. Celal Bayar University Journal of Science 13/4 (December 2017), 851-861. https://doi.org/10.18466/cbayarfbe.339858.
JAMA Sertbakan TR. Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline. CBUJOS. 2017;13:851–861.
MLA Sertbakan, Tevfik Raci. “Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline”. Celal Bayar University Journal of Science, vol. 13, no. 4, 2017, pp. 851-6, doi:10.18466/cbayarfbe.339858.
Vancouver Sertbakan TR. Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline. CBUJOS. 2017;13(4):851-6.