Research Article
BibTex RIS Cite
Year 2018, Volume: 14 Issue: 2, 187 - 193, 30.06.2018
https://doi.org/10.18466/cbayarfbe.393015

Abstract

References

  • 1. Stille, J.K, Polyquinolines, Macromolecules, 1981, 14(3), 870– 880.
  • 2. Kimyonok, A, Wang, X.Y, Weck, M, Electroluminescent poly(quinoline)s and metalloquinolates, Journal Macromolecular Science Part C Polymer Reviews, 2006, 46 (1), 47-77.
  • 3. Thivaios, I, Koukoumtzis, V, Kallitsis, J.K, Bokias, G, Quinoline-labeled poly(N-isopropylacrylamide): a selective polymeric luminescent sensor of cationic surfactants, Sensors and Actuators B, 2016, 233, 127-135.
  • 4. Bilici, A, Chemical oxidation of 5-amino quinoline with (NH4)2S2O8: synthesis and characterization, Hacettepe Journal of Biology and Chemistry, 2017, 45, 563-571.
  • 5. Yu, L, Han, Z, Ding, Y, Gram-scale preparation of Pd@PANI: a practical catalyst reagent for copper-free and ligand-free Sonogashira couplings, Organic Process Research & Development, 2016, 20 (12), 2124−2129.
  • 6. Islam, R.U, Mahato, S.K, Shukla, S.K, Witcomb, M.J, Mallick, K, Palladium–poly(3-aminoquinoline) hollow-sphere composite: application in Sonogashira coupling reactions, ChemCatChem, 2013, 5 (8), 2453–2461
  • 7. Choudhary, M, Islam, R.U, Witcom, M.J, Phali, M, Mallick, K, Template-less synthesis of polymer hollow spheres: an efficient catalyst for Suzuki coupling reaction, Applied Organometallic Chemistry, 2013, 27 (9), 523–528.
  • 8. Bilici, A, Ayten, B, Kaya, İ, Facile preparation of gold nanoparticles on the polyquinoline matrix: catalytic performance toward 4-nitrophenol reduction, Synthetic Metals, 2015, 201, 11-17.
  • 9. Bilici, A, Tezel, R.N, Kaya, İ, Facile chemical route to copper/polymer composite: simultaneous reduction and polymerization, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459 (5), 254-260.
  • 10. Mallick, K, Witcomb, M.J, Scurrell, M.S, In situ synthesis of copper nanoparticles and poly(o-toluidine): a metal–polymer composite material, European Polymer Journal, 2006, 42(3) , 670-675.
  • 11. Islam, R.U., Taher, A., Choudhary, M., Siwal, S., Mallick K., Polymer immobilized Cu(I) formation and azide-alkyne cycloaddition: A one pot reaction, Scientific Reports, 2015, 5, 1-8.
  • 12. Costa, J.C.S, Taveira, R.J.S, Lima, C.F.R.A.C, Mendes, A, Santos, L.M.N.B.F, Optical band gaps of organic semiconductor materials, Optical Materials, 2016, 58, 51–60.
  • 13. Vyazovkin, S, Burnham, A.K, Criado, J.M, Pérez-Maqueda, L.A, Popescu C, Sbirrazzuoli, N, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, 2011, 520, 1-19.
  • 14. Flynn, J.H, Wall, L.A, A quick, direct method for the determination of activation energy from thermogravimetric data, Journal of Polymer Science Part C: Polymer Letters, 1966, 4 (5), 323–328.
  • 15. Takeo, O, A new method of analyzing thermogravimetric data., Bulletin of the Chemical Society of Japan, 1965, 38 (11), 1881–1886
  • 16. Wanjun, T, Yuwen, L, Xi Y, Cunxin, W, Kinetic studies of the calcination of ammonium metavanadate by thermal methods, Industrial & Engineering Chemistry Research, 2004, 43 (9), 2054–2059.
  • 17. Kissinger, H.E, Reaction kinetics in differential thermal analysis, Analytical Chemistry, 1957, 29 (11), 1702–1706.
  • 18. Akahira, T, Sunose, T, Method of determining activation deterioration constant of electrical insulating materials, Research Report Chiba Institute of Technology, 1971, 16, 22–31.
  • 19. Coats, A.W, Redfern, J.P, Kinetics parameters from thermogravimetric data. Nature, 1964, 201, 68-69.
  • 20. Kamel, L.T, The kinetic analysis of non‐isothermal carisoprodol reaction in nitrogen atmosphere using the invariant kinetic parameters method, European Journal of Chemistry, 2014, 5 (3), 507‐512.

Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite

Year 2018, Volume: 14 Issue: 2, 187 - 193, 30.06.2018
https://doi.org/10.18466/cbayarfbe.393015

Abstract

In here, chemical oxidative synthesis of a new poly(quinoline)-copper
composite was given in one-step pathway. To obtain composite, the copper
sulphate and 2-amino-8-quinolinol were used as oxidant and monomer,
respectively. The oxidation product obtained was characterized by FTIR, UV-Vis,
thermogravimetry (TG), photoluminescence (PL), SEM-EDX, TEM analysis and solid
state conductivity measurements.
SEM observations exhibited the presence of a plate-like heterogeneous
morphology.
Rod like structures was revealed from TEM images. TEM studies also indicated that the copper
nanoparticles were almost uniformly distributed on polymer. The thermal
decomposition kinetics of oxidation product were also studied. For this, the different
methods such as Coats-Redfern, Flynn-Wall-Ozawa, Tang and
Kissinger-Akahira-Sunose were used.

References

  • 1. Stille, J.K, Polyquinolines, Macromolecules, 1981, 14(3), 870– 880.
  • 2. Kimyonok, A, Wang, X.Y, Weck, M, Electroluminescent poly(quinoline)s and metalloquinolates, Journal Macromolecular Science Part C Polymer Reviews, 2006, 46 (1), 47-77.
  • 3. Thivaios, I, Koukoumtzis, V, Kallitsis, J.K, Bokias, G, Quinoline-labeled poly(N-isopropylacrylamide): a selective polymeric luminescent sensor of cationic surfactants, Sensors and Actuators B, 2016, 233, 127-135.
  • 4. Bilici, A, Chemical oxidation of 5-amino quinoline with (NH4)2S2O8: synthesis and characterization, Hacettepe Journal of Biology and Chemistry, 2017, 45, 563-571.
  • 5. Yu, L, Han, Z, Ding, Y, Gram-scale preparation of Pd@PANI: a practical catalyst reagent for copper-free and ligand-free Sonogashira couplings, Organic Process Research & Development, 2016, 20 (12), 2124−2129.
  • 6. Islam, R.U, Mahato, S.K, Shukla, S.K, Witcomb, M.J, Mallick, K, Palladium–poly(3-aminoquinoline) hollow-sphere composite: application in Sonogashira coupling reactions, ChemCatChem, 2013, 5 (8), 2453–2461
  • 7. Choudhary, M, Islam, R.U, Witcom, M.J, Phali, M, Mallick, K, Template-less synthesis of polymer hollow spheres: an efficient catalyst for Suzuki coupling reaction, Applied Organometallic Chemistry, 2013, 27 (9), 523–528.
  • 8. Bilici, A, Ayten, B, Kaya, İ, Facile preparation of gold nanoparticles on the polyquinoline matrix: catalytic performance toward 4-nitrophenol reduction, Synthetic Metals, 2015, 201, 11-17.
  • 9. Bilici, A, Tezel, R.N, Kaya, İ, Facile chemical route to copper/polymer composite: simultaneous reduction and polymerization, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459 (5), 254-260.
  • 10. Mallick, K, Witcomb, M.J, Scurrell, M.S, In situ synthesis of copper nanoparticles and poly(o-toluidine): a metal–polymer composite material, European Polymer Journal, 2006, 42(3) , 670-675.
  • 11. Islam, R.U., Taher, A., Choudhary, M., Siwal, S., Mallick K., Polymer immobilized Cu(I) formation and azide-alkyne cycloaddition: A one pot reaction, Scientific Reports, 2015, 5, 1-8.
  • 12. Costa, J.C.S, Taveira, R.J.S, Lima, C.F.R.A.C, Mendes, A, Santos, L.M.N.B.F, Optical band gaps of organic semiconductor materials, Optical Materials, 2016, 58, 51–60.
  • 13. Vyazovkin, S, Burnham, A.K, Criado, J.M, Pérez-Maqueda, L.A, Popescu C, Sbirrazzuoli, N, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, 2011, 520, 1-19.
  • 14. Flynn, J.H, Wall, L.A, A quick, direct method for the determination of activation energy from thermogravimetric data, Journal of Polymer Science Part C: Polymer Letters, 1966, 4 (5), 323–328.
  • 15. Takeo, O, A new method of analyzing thermogravimetric data., Bulletin of the Chemical Society of Japan, 1965, 38 (11), 1881–1886
  • 16. Wanjun, T, Yuwen, L, Xi Y, Cunxin, W, Kinetic studies of the calcination of ammonium metavanadate by thermal methods, Industrial & Engineering Chemistry Research, 2004, 43 (9), 2054–2059.
  • 17. Kissinger, H.E, Reaction kinetics in differential thermal analysis, Analytical Chemistry, 1957, 29 (11), 1702–1706.
  • 18. Akahira, T, Sunose, T, Method of determining activation deterioration constant of electrical insulating materials, Research Report Chiba Institute of Technology, 1971, 16, 22–31.
  • 19. Coats, A.W, Redfern, J.P, Kinetics parameters from thermogravimetric data. Nature, 1964, 201, 68-69.
  • 20. Kamel, L.T, The kinetic analysis of non‐isothermal carisoprodol reaction in nitrogen atmosphere using the invariant kinetic parameters method, European Journal of Chemistry, 2014, 5 (3), 507‐512.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Bilici

Ruhiye Nilay Tezel This is me

İsmet Kaya This is me

Fatih Doğan

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 14 Issue: 2

Cite

APA Bilici, A., Tezel, R. N., Kaya, İ., Doğan, F. (2018). Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite. Celal Bayar University Journal of Science, 14(2), 187-193. https://doi.org/10.18466/cbayarfbe.393015
AMA Bilici A, Tezel RN, Kaya İ, Doğan F. Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite. CBUJOS. June 2018;14(2):187-193. doi:10.18466/cbayarfbe.393015
Chicago Bilici, Ali, Ruhiye Nilay Tezel, İsmet Kaya, and Fatih Doğan. “Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite”. Celal Bayar University Journal of Science 14, no. 2 (June 2018): 187-93. https://doi.org/10.18466/cbayarfbe.393015.
EndNote Bilici A, Tezel RN, Kaya İ, Doğan F (June 1, 2018) Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite. Celal Bayar University Journal of Science 14 2 187–193.
IEEE A. Bilici, R. N. Tezel, İ. Kaya, and F. Doğan, “Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite”, CBUJOS, vol. 14, no. 2, pp. 187–193, 2018, doi: 10.18466/cbayarfbe.393015.
ISNAD Bilici, Ali et al. “Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite”. Celal Bayar University Journal of Science 14/2 (June 2018), 187-193. https://doi.org/10.18466/cbayarfbe.393015.
JAMA Bilici A, Tezel RN, Kaya İ, Doğan F. Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite. CBUJOS. 2018;14:187–193.
MLA Bilici, Ali et al. “Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite”. Celal Bayar University Journal of Science, vol. 14, no. 2, 2018, pp. 187-93, doi:10.18466/cbayarfbe.393015.
Vancouver Bilici A, Tezel RN, Kaya İ, Doğan F. Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite. CBUJOS. 2018;14(2):187-93.