Research Article
BibTex RIS Cite

Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States

Year 2018, Volume: 14 Issue: 3, 309 - 314, 30.09.2018
https://doi.org/10.18466/cbayarfbe.428648

Abstract

A better classification between patients with
parkinson disease and healthy adults is of great importance for clinicians and
directly affects the selection of treatment method, the adjustment of
medication dose, or even the decision about a dopaminergic therapy. Clinicians
widely use semi-objective/subjective assessments in order to be able to differ
patients from healthy adults. Here, to make an objective classification between
two distinct groups (healthy/patient), we apply a powerful method, recurrence
quantification analysis, on data including trajectory behavior of gait reaction
forces with long length collected from elderly patients with Parkinson disease
and healthy adults as they walk. We show that the complexity measures of the
quantification analysis, determinism, entropy and divergence, behave different
for two distinct groups (healthy/patients) and may be used for an objective
classification.

References

  • 1. Hausdorff, J.M, Gait Dynamics in Parkinson disease: Common and distinct behavior among stride length, gait variability, and fractal like scaling, Chaos: An Interdisciplinary Journal of Nonlinear Scien-ce, 2009, 19(2), 026113.
  • 2. Whittle, M.W, Clinical gait analysis: A review. Human Movement Science, 1996, 15, 369–387.
  • 3. Simon, S.R, Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems, Journal of biomecha-nics, 2004, 37, 1869–1880.
  • 4. Kempen, G.I, et al., The Short FES-I: a shortened version of the falls efficacy scale-international to assess fear of falling, Age and Ageing, 2008, 37, 45-50.
  • 5. Goetz, C.G, Tilley, B.C, Shaftman, S.R, Stebbins, G.T, Fahn, S, Martinez-Martin, P, Poewe, W, Sampaio, C, Stern, M.B, Dodel, R, Dubois, B, Holloway, R, Jankovic, J, Kulisevsky, J, Lang, A.E, Lees, A, Leurgans, S, LeWitt, P.A, Nyenhuis, D, Olanow, C.W, Rascol, O, Schrag, A, Teresi, J.A, van Hilten, J.J, LaPelle, N, Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorder, 2008, 23(15), 2129-2170.
  • 6. Rabey, J. M, Korczyn, A. D. The Hoehn and Yahr rating scale for Parkinson’s disease Instrumental Methods and Scoring in Extrapyrami-dal Disorders, Springer, 1995.
  • 7. Toosizadeh. N, Mohler, J, Lei, H, Parvaneh, S, Sherman, S, Najafi, B, Motor Performance Assessment in Parkinson’s Disease: Association between Objective In-Clinic, Objective In-Home, and Subjective/Semi-Objective Measures, Plos One, 2015, 10(4), e0124763.
  • 8. Hausdorff, J.M, Lertratanakul, A, Cudkowicz, M.E, Peterson, A.L, Kaliton, D, Goldberger, A.L, Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis, Journal of applied physiology, 2000, 88, 2045–2053.
  • 9. Bartsch, R, Plotnik, M, Kantelhardt, J.W, Havlin, S, Giladi, N, Haus-dorff, J.M, Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of parkinson’s disease, Physica A: Sta-tistical Mechanics and its Applications, 2007, 383, 455–465.
  • 10. Hausdorff, J.M, Peng, C.K, Ladin, Z, Wei, J.Y, Goldberger, A.L, Is walking a random walk? Evidence for long-range correlations in stride interval of human gait, Journal of Applied Physiology, 1995, 383, 349-358.
  • 11. Afsar, O, Tirnakli, U, Kurths, J, Entropy-based complexity measures for gait data of patients with parkinson’s disease. Chaos: An Interdiscip-linary Journal of Nonlinear Science, 2016, 26, 023115.
  • 12. Bernad-Elazari, H, Herman, T, Mirelman, A, Gazit, E, Giladi, N, Hausdorff, J.M, Objective characterization of daily living transitions in patients with parkinson’s disease using a single body-fixed sensor, Journal of neurology, 2016, 263, 1544-1551.
  • 13. Afsar, O, Tirnakli, U, Marwan, N, Recurrence quantification analysis at work: Quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease, Nature-Scientific Reports, 2018, in press.
  • 14. Kirchner, M, Schubert, P, Liebherr, M, Haas, C.T, Detrended Fluctua-tion Analysis and Adaptive Fractal Analysis of Stride Time Data in Par-kinson’s Disease: Stitching Together Short Gait Trials, Plos One, 2014, 9, 1-6.
  • 15. Marwan, N., Romano, M. C., Thiel, M. & Kurths, J. Recurrence plots for the analysis of complex systems, Physics Reports, 2007, 438, 237–329.
  • 16. Poincare, H, Sur le probleme des trois corps et les equations de la dynamique, Acta mathematica, 1890, 13, 1-270. 17. Marwan, N, Schinkel, S, Kurths, J, Recurrence plots 25 years later-gaining confidence in dynamical transitions, EPL (Europhysics Letters), 2013, 101, 20007.
  • 18. Hausdorff, J.M, Ladin, Z, Wei, J.Y, Footswitch system for measure-ment of the temporal parameters of gait, Journal of biomechanics, 1995, 28, 347–351.
  • 19. Bazner, H, Oster, M, Daffertshofer, M, Hennerici M, Assessment of gait in subcortical vascular encephalopathy by computerized analysis: a cross-sectional and longitudinal study, Journal of Neurology, 2000, 415, 841-849.
  • 20. Goldberger, A.L, Amaral, L.A, Glass, L, Hausdorff, J.M, Ivanov, P.C, Mark, R.G, Mietus, J.E, Moody, G.B, Peng, C.K, Stanley, H.E, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new rese-arch resource for complex physiologic signals, Circulation, 2000, 101, e215-e220.
  • 21. Eckmann, J.P, Kamphorst, S.O, Ruelle, D, Recurrence plots of dynami-cal systems, EPL (Europhysics Letters), 1987, 4, 973-977.
Year 2018, Volume: 14 Issue: 3, 309 - 314, 30.09.2018
https://doi.org/10.18466/cbayarfbe.428648

Abstract

References

  • 1. Hausdorff, J.M, Gait Dynamics in Parkinson disease: Common and distinct behavior among stride length, gait variability, and fractal like scaling, Chaos: An Interdisciplinary Journal of Nonlinear Scien-ce, 2009, 19(2), 026113.
  • 2. Whittle, M.W, Clinical gait analysis: A review. Human Movement Science, 1996, 15, 369–387.
  • 3. Simon, S.R, Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems, Journal of biomecha-nics, 2004, 37, 1869–1880.
  • 4. Kempen, G.I, et al., The Short FES-I: a shortened version of the falls efficacy scale-international to assess fear of falling, Age and Ageing, 2008, 37, 45-50.
  • 5. Goetz, C.G, Tilley, B.C, Shaftman, S.R, Stebbins, G.T, Fahn, S, Martinez-Martin, P, Poewe, W, Sampaio, C, Stern, M.B, Dodel, R, Dubois, B, Holloway, R, Jankovic, J, Kulisevsky, J, Lang, A.E, Lees, A, Leurgans, S, LeWitt, P.A, Nyenhuis, D, Olanow, C.W, Rascol, O, Schrag, A, Teresi, J.A, van Hilten, J.J, LaPelle, N, Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorder, 2008, 23(15), 2129-2170.
  • 6. Rabey, J. M, Korczyn, A. D. The Hoehn and Yahr rating scale for Parkinson’s disease Instrumental Methods and Scoring in Extrapyrami-dal Disorders, Springer, 1995.
  • 7. Toosizadeh. N, Mohler, J, Lei, H, Parvaneh, S, Sherman, S, Najafi, B, Motor Performance Assessment in Parkinson’s Disease: Association between Objective In-Clinic, Objective In-Home, and Subjective/Semi-Objective Measures, Plos One, 2015, 10(4), e0124763.
  • 8. Hausdorff, J.M, Lertratanakul, A, Cudkowicz, M.E, Peterson, A.L, Kaliton, D, Goldberger, A.L, Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis, Journal of applied physiology, 2000, 88, 2045–2053.
  • 9. Bartsch, R, Plotnik, M, Kantelhardt, J.W, Havlin, S, Giladi, N, Haus-dorff, J.M, Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of parkinson’s disease, Physica A: Sta-tistical Mechanics and its Applications, 2007, 383, 455–465.
  • 10. Hausdorff, J.M, Peng, C.K, Ladin, Z, Wei, J.Y, Goldberger, A.L, Is walking a random walk? Evidence for long-range correlations in stride interval of human gait, Journal of Applied Physiology, 1995, 383, 349-358.
  • 11. Afsar, O, Tirnakli, U, Kurths, J, Entropy-based complexity measures for gait data of patients with parkinson’s disease. Chaos: An Interdiscip-linary Journal of Nonlinear Science, 2016, 26, 023115.
  • 12. Bernad-Elazari, H, Herman, T, Mirelman, A, Gazit, E, Giladi, N, Hausdorff, J.M, Objective characterization of daily living transitions in patients with parkinson’s disease using a single body-fixed sensor, Journal of neurology, 2016, 263, 1544-1551.
  • 13. Afsar, O, Tirnakli, U, Marwan, N, Recurrence quantification analysis at work: Quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease, Nature-Scientific Reports, 2018, in press.
  • 14. Kirchner, M, Schubert, P, Liebherr, M, Haas, C.T, Detrended Fluctua-tion Analysis and Adaptive Fractal Analysis of Stride Time Data in Par-kinson’s Disease: Stitching Together Short Gait Trials, Plos One, 2014, 9, 1-6.
  • 15. Marwan, N., Romano, M. C., Thiel, M. & Kurths, J. Recurrence plots for the analysis of complex systems, Physics Reports, 2007, 438, 237–329.
  • 16. Poincare, H, Sur le probleme des trois corps et les equations de la dynamique, Acta mathematica, 1890, 13, 1-270. 17. Marwan, N, Schinkel, S, Kurths, J, Recurrence plots 25 years later-gaining confidence in dynamical transitions, EPL (Europhysics Letters), 2013, 101, 20007.
  • 18. Hausdorff, J.M, Ladin, Z, Wei, J.Y, Footswitch system for measure-ment of the temporal parameters of gait, Journal of biomechanics, 1995, 28, 347–351.
  • 19. Bazner, H, Oster, M, Daffertshofer, M, Hennerici M, Assessment of gait in subcortical vascular encephalopathy by computerized analysis: a cross-sectional and longitudinal study, Journal of Neurology, 2000, 415, 841-849.
  • 20. Goldberger, A.L, Amaral, L.A, Glass, L, Hausdorff, J.M, Ivanov, P.C, Mark, R.G, Mietus, J.E, Moody, G.B, Peng, C.K, Stanley, H.E, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new rese-arch resource for complex physiologic signals, Circulation, 2000, 101, e215-e220.
  • 21. Eckmann, J.P, Kamphorst, S.O, Ruelle, D, Recurrence plots of dynami-cal systems, EPL (Europhysics Letters), 1987, 4, 973-977.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Özgür Afşar

Publication Date September 30, 2018
Published in Issue Year 2018 Volume: 14 Issue: 3

Cite

APA Afşar, Ö. (2018). Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States. Celal Bayar University Journal of Science, 14(3), 309-314. https://doi.org/10.18466/cbayarfbe.428648
AMA Afşar Ö. Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States. CBUJOS. September 2018;14(3):309-314. doi:10.18466/cbayarfbe.428648
Chicago Afşar, Özgür. “Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States”. Celal Bayar University Journal of Science 14, no. 3 (September 2018): 309-14. https://doi.org/10.18466/cbayarfbe.428648.
EndNote Afşar Ö (September 1, 2018) Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States. Celal Bayar University Journal of Science 14 3 309–314.
IEEE Ö. Afşar, “Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States”, CBUJOS, vol. 14, no. 3, pp. 309–314, 2018, doi: 10.18466/cbayarfbe.428648.
ISNAD Afşar, Özgür. “Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States”. Celal Bayar University Journal of Science 14/3 (September 2018), 309-314. https://doi.org/10.18466/cbayarfbe.428648.
JAMA Afşar Ö. Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States. CBUJOS. 2018;14:309–314.
MLA Afşar, Özgür. “Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States”. Celal Bayar University Journal of Science, vol. 14, no. 3, 2018, pp. 309-14, doi:10.18466/cbayarfbe.428648.
Vancouver Afşar Ö. Recurrence Quantification Analysis on Gait Reaction Forces of Elderly Adults for Determination of Pathological States. CBUJOS. 2018;14(3):309-14.