BibTex RIS Cite

Lorentz Dönüşümlerinin Kompleks Kuaternionlarla İncelenmesi

Year 2007, Volume: 3 Issue: 1, 1 - 14, 01.03.2007

Abstract

References

  • Hamilton, W. R., Elements of Quaternions , Vol.I, II and III, Chelsea, New York, (1899).
  • Imaeda, K., A New Formulation of Classical Electrodynamics , Nuovo Cimento, 32B(1): 138-162 (1976).
  • Negi, O. P. S., et al., Revisting Quaternion Formulation and Electromagnetism , Nuovo Cimento, 113B(12): 1449-1467 (1998).
  • Lambek, J., If Hamilton Had Prevailed: Quaternions in Physics , The Mathematical Intelligencer, 17(4): 7-15 (1995).
  • Gürsey, F. and Tze, C. H., On the role of Division, Jordan and Related Algebras in Particle Physics , Singapore, World Scientific, (1996).
  • Colombo, F. and et al., Regular Functions of Biquaternionic Variables and Maxwell s Equations , Journal of Geometry and Physics, 26: 183-201 (1998).
  • Gsponer, A., Hurni, J. P., Comment on Formulating and Generalizing Dirac s, Proca s, and Maxwell s Equations with Biquaternions or Clifford Numbers , Foundations of Physics Letters, 14(1): 77- 85, (2001).
  • Silberstein, L., Quaternionic Form of Relativity , Philosophical Magazine, 23; 790- 809 (1912).
  • Sobczyk, G., Spacetime Vector Analysis , Physics Letters, 84A(2): 45-48 (1981).
  • Jantzen, R., Generalized Quaternions and Spacetime Symmetries , J. Mathematical Physics, 23(10): 1741-1746 (1982).
  • Abonyi, I. and et al. A Quaternion Representation of the Lorentz Group for Classical Physical Applications , Journal of Physics A: Mathematical and General, 24:3245-3254 (1991).
  • Kassandrov, V. V., Biquaternion Electrodynamics and Weyl-Cartan Geometry of Space-Time , Gravitation and Cosmology, 1(3): 216-222 (1995).
  • Ward, J. P., Quaternions and Cayley Numbers , Dordrecht, Boston, London, Kluwer Academic Publishers, (1997).
  • Conte, E., On a Generalization of Quantum Mechanics by Biquaternions , Hadronnic Journal, 16, 261-275 1993).
  • De Leo, S. and Rotelli, P., Translations Between Quaternion and Complex Quantum Mechanics , Progress of Theoretical Physics, 92(5): 917-926 (1994).
  • De Leo, S. and Rodrigues W. A., Quantum Mechanics: From Complex to Complexified Quaternions , Int. Journal of Theoretical Physics, 36(12): 2725-2757 (1997).
  • Kyrala, A., Theoretical Physics: Applications of Vectors, Matrices, Tensors and Quaternions , Philadelphia, London, W. B. Saunders Company, (1967).
  • Rao S. K. N., On the Quaternion Representation of the Proper Lorentz Group SO(3,1) , Journal of Mathematical Physics , 24( 8): 1945-1954 (1983).
  • Manogue, C., Schray, J., Finite Lorentz Transformations, Automorphisms and Divison Algebras , Journal of Mathematical Physics, 34(8): 3746-3767 (1993).
  • Dahm, R., Complex Quaternions in Spacetime Symmetry and Relativistic Spin-Flavor Supermultiplets , Physics of Atomic Nuclei, 61(11): 1885-1891 (1998).
  • De Leo, S., Quaternionic Lorentz Group and Dirac Equation , Foundations of Physics Letters , 14(1): 37-50 (2001).
  • De Leo, S., Quaternions and Special Relativity , Journal of Mathematical Physics, 37(6): 2955-2968 (1996).
  • Chou, J. C. K., Quaternion Kinematic and Dynamic Differantial Equations , IEEE Transaction on Robotics and Automation, 8(1): 53-64 (1992).

LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ

Year 2007, Volume: 3 Issue: 1, 1 - 14, 01.03.2007

Abstract

References

  • Hamilton, W. R., Elements of Quaternions , Vol.I, II and III, Chelsea, New York, (1899).
  • Imaeda, K., A New Formulation of Classical Electrodynamics , Nuovo Cimento, 32B(1): 138-162 (1976).
  • Negi, O. P. S., et al., Revisting Quaternion Formulation and Electromagnetism , Nuovo Cimento, 113B(12): 1449-1467 (1998).
  • Lambek, J., If Hamilton Had Prevailed: Quaternions in Physics , The Mathematical Intelligencer, 17(4): 7-15 (1995).
  • Gürsey, F. and Tze, C. H., On the role of Division, Jordan and Related Algebras in Particle Physics , Singapore, World Scientific, (1996).
  • Colombo, F. and et al., Regular Functions of Biquaternionic Variables and Maxwell s Equations , Journal of Geometry and Physics, 26: 183-201 (1998).
  • Gsponer, A., Hurni, J. P., Comment on Formulating and Generalizing Dirac s, Proca s, and Maxwell s Equations with Biquaternions or Clifford Numbers , Foundations of Physics Letters, 14(1): 77- 85, (2001).
  • Silberstein, L., Quaternionic Form of Relativity , Philosophical Magazine, 23; 790- 809 (1912).
  • Sobczyk, G., Spacetime Vector Analysis , Physics Letters, 84A(2): 45-48 (1981).
  • Jantzen, R., Generalized Quaternions and Spacetime Symmetries , J. Mathematical Physics, 23(10): 1741-1746 (1982).
  • Abonyi, I. and et al. A Quaternion Representation of the Lorentz Group for Classical Physical Applications , Journal of Physics A: Mathematical and General, 24:3245-3254 (1991).
  • Kassandrov, V. V., Biquaternion Electrodynamics and Weyl-Cartan Geometry of Space-Time , Gravitation and Cosmology, 1(3): 216-222 (1995).
  • Ward, J. P., Quaternions and Cayley Numbers , Dordrecht, Boston, London, Kluwer Academic Publishers, (1997).
  • Conte, E., On a Generalization of Quantum Mechanics by Biquaternions , Hadronnic Journal, 16, 261-275 1993).
  • De Leo, S. and Rotelli, P., Translations Between Quaternion and Complex Quantum Mechanics , Progress of Theoretical Physics, 92(5): 917-926 (1994).
  • De Leo, S. and Rodrigues W. A., Quantum Mechanics: From Complex to Complexified Quaternions , Int. Journal of Theoretical Physics, 36(12): 2725-2757 (1997).
  • Kyrala, A., Theoretical Physics: Applications of Vectors, Matrices, Tensors and Quaternions , Philadelphia, London, W. B. Saunders Company, (1967).
  • Rao S. K. N., On the Quaternion Representation of the Proper Lorentz Group SO(3,1) , Journal of Mathematical Physics , 24( 8): 1945-1954 (1983).
  • Manogue, C., Schray, J., Finite Lorentz Transformations, Automorphisms and Divison Algebras , Journal of Mathematical Physics, 34(8): 3746-3767 (1993).
  • Dahm, R., Complex Quaternions in Spacetime Symmetry and Relativistic Spin-Flavor Supermultiplets , Physics of Atomic Nuclei, 61(11): 1885-1891 (1998).
  • De Leo, S., Quaternionic Lorentz Group and Dirac Equation , Foundations of Physics Letters , 14(1): 37-50 (2001).
  • De Leo, S., Quaternions and Special Relativity , Journal of Mathematical Physics, 37(6): 2955-2968 (1996).
  • Chou, J. C. K., Quaternion Kinematic and Dynamic Differantial Equations , IEEE Transaction on Robotics and Automation, 8(1): 53-64 (1992).
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Süleyman Demir This is me

Publication Date March 1, 2007
Published in Issue Year 2007 Volume: 3 Issue: 1

Cite

APA Demir, S. (2007). LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 3(1), 1-14.
AMA Demir S. LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ. CBUJOS. March 2007;3(1):1-14.
Chicago Demir, Süleyman. “LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 3, no. 1 (March 2007): 1-14.
EndNote Demir S (March 1, 2007) LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 3 1 1–14.
IEEE S. Demir, “LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ”, CBUJOS, vol. 3, no. 1, pp. 1–14, 2007.
ISNAD Demir, Süleyman. “LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 3/1 (March 2007), 1-14.
JAMA Demir S. LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ. CBUJOS. 2007;3:1–14.
MLA Demir, Süleyman. “LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 3, no. 1, 2007, pp. 1-14.
Vancouver Demir S. LORENTZ DÖNÜŞÜMLERİNİN KOMPLEKS KUATERNİ ONLARLA İNCELENMESİ. CBUJOS. 2007;3(1):1-14.