BibTex RIS Cite

Bitki Tuz Stresi Etkilerine Karşı Geliştirdikleri Çeşitli Tolerans Stratejileri

Year 2011, Volume: 7 Issue: 1, 47 - 66, 01.03.2011

Abstract

-

References

  • Gürel A., and Avcıoğlu, R., ‘‘Bitkilerde Strese Dayanıklılık Fizyolojisi’’, 21. bölüm, Editörler: Özcan, S., Gürel, E., Babaoğlu, M., ‘‘Bitki Biyoteknolojisi II, Genetik Mühendisliği ve Uygulamaları’’,
  • Yayınları, 308-313, (2001). Üniversitesi
  • Vakfı [2] Kalefetoğlu, T., and Ekmekçi, Y., ‘‘Bitkilerde kuraklık stresinin etkileri ve dayanıklılık mekanizmaları (Derleme)’’, G.Ü., Fen Bilimleri Dergisi, 18 (4): 723-740 (2005).
  • Mahajan, S., and Tuteja, N., ‘‘Cold, salinity and drought stress: an overview’’, Archives of Biochemistry and Biophysics, 444: 139-158 (2005).
  • Ekmekçi, E., Apan, M., and Kara, T., ‘‘Tuzluluğun bitki gelişimine etkisi’’, OMÜ, Ziraat Fakültesi Dergisi, 20 (3): 118-125 (2005).
  • Munns, R., ‘‘Comparative physiology of salt and water stress’’, Plant, Cell and Environment, 25: 239-250 (2002).
  • Glenn, E.P., Brown, J.J., Khan, M.J., ‘‘Mechanisms of Salt Tolerance in Higher Plants’’, Edited by Basra, A.S., and Basra, R.K., ‘‘Mechanisms of Environmental Stress Resistance in Plants’’, Harwood Academic Publishers, 83- 110, (1997).
  • Bressan, R.A., ‘‘Stres Fizyolojisi’’, Editörler: Taiz, L., Zeiger, E., Çeviri Editörü: Türkan İ., ‘‘Bitki Fizyolojisi’’, Palme Yayıncılık, Ankara, 591-620 (2008).
  • Koca, H., Bor, M., Özdemir, F., and Türkan, İ., ‘‘The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame
  • Experimental Botany, 60: 344-351 (2007). Environmental
  • and [9] Mugdal, V., Madaan, N., and Mudgal, A., ‘‘Biochemical mechanisms of salt tolerance in plants: a review’’, International Journal of Botany, 6 (2):136-143 (2010).
  • Chinnusamy, V., Jagendorf, A., and Zhu, J.- K., ‘‘Understanding and improving salt tolerance in plants’’, Crop Science, 45: 437-448 (2005).
  • Parida, A.K., and Das, A.B., ‘‘Salt tolerance and salinity effects on plants: a review’’, Ecotoxicology and Environmental Safety, 60: 324- 349 (2005).
  • Kuşvuran, Ş., Yaşar, F., Abak, K., and Ellialtıoğlu, Ş., ‘‘Tuz stresi altında yetiştirilen tuza tolerant ve duyarlı Cucumis sp.’nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler’’, Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 18 (1): 13-20 (2008).
  • Erdal, İ., Türkmen, Ö., and Yıldız, M., ‘‘Tuz stresi altında yetiştirilen hıyar (Cucumis sativus L.) fidelerinin gelişimi ve kimi besin maddeleri içeriğindeki
  • gübrelemenin etkisi’’, Yüzüncü Yıl Ün., Ziraat Fakültesi, Tarım Bilimleri Dergisi, 10 (1): 25-29 (2000) üzerine
  • potasyumlu [14] Parvaiz, A., and Satyawati, S., ‘‘Salt stress and phyto-biochemical responses of plants-a review’’, Plant Soil Environment, 54 (3): 89-99 (2008).
  • Ashraf, M., and Haris, P.J.C., ‘‘Potential biochemical indicators of salinity tolerance in plants’’, Plant Science, 166: 3-16 (2004).
  • Amini, F., Ehsanpour, A.A., Hoang, Q.T., and Shin, J.S., ‘‘Protein pattern changes in tomato under in vitro salt stress’’, Russian Journal of Plant Physiology, 54 (4): 464-471 (2007).
  • Ashraf, M., ‘‘Some important physiological selection criteria for salt tolerance in plants’’, Flora, 199: 361-376 (2004).
  • Rahman, S., Matsumuro, T., Miyake, H., and Takeoka, Y., ‘‘Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.)’’, Plant Prod. Sci., 3 (4): 422-429 (2000).
  • Parida, A.K., Das, A.B., and Mittra, B., ‘‘Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Brugueira parviflora chloroplasts’’, Photosynthetica, 41 (2): 191-200 (2003).
  • Yakıt, S., and Tuna, A.L., ‘‘Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine Ca, Mg ve K’un etkileri’’, Akdeniz Üniversitesi, Ziraat Fakültesi Dergisi, 19 (1): 59-67 (2006).
  • Öncel, I., and Keleş, Y., ‘‘Tuz stresi altındaki buğday genotiplerinde büyüme, pigment içeriği ve çözünür madde kompozisyonunda değişmeler’’, C.Ü., Fen-Edebiyat Fakültesi, Fen Bilimleri Dergisi, 23 (2): 8-16 (2002).
  • Ali, Y., Aslam, Z., Ashraf, M.Y., and Tahir, G.R., ‘‘Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment’’,
  • Environmental Science and Technology, 1 (3): 221-225 (2004). Journal
  • of [23] Yıldız, M., Terzi, H., Cenkçi, S., Arıkan Terzi, E.S., and Uruşak, B., ‘‘Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri’’, Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 1 (1): 1-33 (2010).
  • ] Gomez-Canedas, A., Arbona, V., Jacas, J., Primo-Millo, E., and Talon, M, ‘‘Absisic acid reduced leaf abscission and increases salt tolerance in citrus plants’’, J. Plant Growth Regul., 21: 234- 240 (2003). [25] Arzani, A., ‘‘Improwing salinity tolerance in crop plants: a biotechnological review’’, In Vitro Cell Dev. Biol.-Plant, 44: 373- 383 (2008).
  • Sultana, N., Ikeda, T., and Itoh, R., ‘‘Effect of NaCl salinity on photosynthesis and dry matter accumulation in devoloping rice grains’’, Environmental and Experimental Botany, 42: 211- 220 (1999).
  • Koyro, H.-W., ‘‘Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago cronopus (L.)’’, Environmental and Experimental Botany, 56: 136-146 (2006).
  • Meloni, D.A., Oliva, M. A., Martinez, C. A.,
  • and Cambraia, J., ‘‘Photosynthesis and activity of superoxide dismutase and glutathione reductase in cotton under salt stress’’, Environmental and Experimental Botany, 49: 69-76 (2003).
  • Apse, M.P., Blumwald, E., ‘‘Engineering salt tolerance in plants’’, Current Opinion in Biotechnology, 13: 146-150 (2002).
  • Altınışık, M., ‘‘Serbest oksijen radikalleri ve antioksidanlar’’, ADÜ Tıp Fakültesi, Biyokimya AD., Aydın, 2000.
  • Yaşar, F., Ellialtıoğlu, Ş., Özpay, T., and Uzal, Ö., ‘‘Tuz stresinin karpuzda (Citrullus lanatus (Thunb.) Mansf.) antioksidatif enzim (SOD, CAT, APX ve GR) aktivitesi üzerine etkisi’’, Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 18 (1): 61-65 (2008).
  • Zhu, J-K., ‘‘Understanding and improving salt tolerance in plants’’, Crop Science, 45: 437-448 (2005).
  • Neto, A.D.A., Prisco, J.T., Eneas-Filho, J., Abreu, C.E.B., and Gomes-Filho, E., ‘‘Effect of salt stress on antioxidatif enzymes and lipid peroxidation in leaves and roots of salt-tolerant and
  • Environmental and Experimental Botany, 56: 87- 94 (2006). maize
  • genotypes’’, [34] Gechev, T.S., Breusegem, F.V., Stone, J.M., Denev, I., and Laloi, C., ‘‘Reactive oxygen species as signals that modulate plant stress responses and programmed cell death’’, BioEssays, 28: 1091- 1101 (2006).
  • Hernandez, J.A., Jimenez, A., Mullineaux, P., and Sevilla, F., ‘‘Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences’’, Plant, Cell and Environment, 23: 853-862 (2000).
  • Shalata, A., and Tal, M., ‘‘The effect of salt stress on lipit peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt tolerant
  • Physiologia Plantarum, 104: 169-174 (1998).
  • pennellii’’ [37] Holmberg, N., and Bülow, L., ‘‘Improwing stress tolerance in plants by gene transfer’’, Trends in Plant Science, 3 (2): 61-66 (1998).
  • Gupta, S.D., ‘‘Plasma mebrane ultrastructure in embryogenic cultures of orchardgrass during NaCl stress’’, Biologia Plantarum, 51 (4): 759-763 (2007).
  • Mansour, M.M.F., and Salama, K.H.A, ‘‘Cellular basis of salinity tolerance in plants’’, Environmental and Experimental Botany, 52: 113- 122 (2004).
  • Salama, K.H.A., Mansour, M.M.F., Ali, F.Z.M., and Abou-hadid, A.F., ‘‘NaCl-induced, changes in plasma membrane lipids and proteins of Zea mays L. cultivars differing in their response to salinity’’, Acta Physiol Plant, 29: 351-359 (2007). [41] Ghoulam, C., Foursy, A., and Fares, K., ‘‘Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjusment in five sugar beet cultivars’’, Environmental and Experimental Botany, 47: 39- 50 (2002).
  • Borsani, O., Valpuesta, V., and Botella, M.A., ‘‘Devoloping salt tolerant plants in a new century: a molecular biology approach’’, Plant Cell, Tissue and Organ Culture, 73: 101-115 (2003).
  • Türkan, I., and Demiral, T., ‘‘Recent developments in understanding salinity tolerance’’ Environmental and Experimental Botany, 67: 2-9 (2009).
  • Smirnoff, N., ‘‘Plant resistance to environmental stress’’, Current Opinion in Biotechnology, 9: 214-219 (1998).
  • Yokoi, S., Bressan, R.A., and Hasegawa, P.M., ‘‘Salt stress tolerance of plants’’, JIRCAS Working Report, 25-33 (2002).
  • Sairam, R.K., and Tyagi, A., ‘‘Physiology and molecular biology of salinity stress tolerance in plants’’, Current Science, 86 (10): 407-421 (2004). [47] Munns, R., ‘‘Genes and salt tolerance: bringing them together’’, New Phytologist, 167: 645-663 (2005).
  • Flowers, T.J., Garcia, A., Koyama, M., and Yeo, A.R., ‘‘Breeding for salt tolerance in crop plants-the role of molecular biology’’, Acta Physiologia Plantarum, 19 (4): 427-433 (1997)
  • Niknam, V., Bagherzadeh, M., Ebrahimzadeh, H., and Sokhansanj, A., ‘‘Effect of NaCl on biomass and contents of sugars, proline and proteins in seedlings and leaf explants of Nicotiana tabacum grown in vitro’’, Biologia Plantarum, 48 (4): 613-614(2004).
  • Mohamed, A.N., Rahman, M.H., Alsadon, A.A., and Islam, R., ‘‘Accumulation of proline in NaCl-treated callus of six tomato (Lycopersicon esculentum Mill.) cultivars’’, Plant Tissue Cult. & Biotech., 17 (2): 217-220 (2007).
  • Wang, W., Vinocur, B., and Altman, A., ‘‘Plant responses to drougth, salinity and extreme temperatures: towards genetic engineering for stress tolerance’’, Planta, 218: 1-14 (2003).
  • Winicow, I., ‘‘New molecular approaches to improving salt tolerance in crop plants’’, Annals of Botany, 82: 703-710 (1998).
  • Vashisht, A.A., and Tuteja, N., ‘‘Stress responsive DEAD-box helicases: a new pathway to engineer plant stres tolerance’’, Journal of Photochemistry and Photobiology B: Biology, 84: 150-160 (2006).
  • Meng, C., Cai, C., Zhang, T., and Guo, W., ‘‘Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L.’’, Plant Science, 176: 352-359 (2009). [55] Wang, Y., Gao, C., Liang, Y., Wang, C., Yang, C., and Liu, G., ‘‘A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants’’, Journal of Plant Physiology, 167: 222-230 (2010).
  • Kaur, N., and Gupta, A.K., ‘’Signal transduction pathways under abiotic stresses in plants’’, Current Science, 88 (11): 1771-1780 (2005).
  • Agarwal, P.K., Agarwal, P., Reddy, M.K., and Sopory, S.K., ‘‘Role of DREB transcription factors in abiotic and biotic stress tolerance in plants’’, Plant Cell Rep, 25: 1263-1274 (2006).
  • Geliş Tarihi: 10/03/2011
  • Kabul Tarihi:10/06/2011

BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS

Year 2011, Volume: 7 Issue: 1, 47 - 66, 01.03.2011

Abstract

BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ

Tuzluluk, kurak ve yarı kurak alanları tehdit eden en önemli problemler arasındadır. Tarımsal
alanlarda tuzluluğun artması, toprağın yapısını bozmakta, bitkilerin ürün kalitesi ve verimliliğini önemli
ölçüde sınırlandırmaktadır. Tuz stresi, bitkilerde çesitli gelisim süreçlerinin yanında morfolojik, hücresel,
fizyolojik ve moleküler seviyede pek çok aksaklıklara neden olmaktadır. Bitkiler, tuz stresine yanıt olarak
çesitli tolerans stratejileri gelistirmektedir. Tuz stresine yanıt çerçevesinde, metabolizma yan ürünü olarak
olusan reaktif oksijen türlerini yok eden çesitli enzimatik olmayan antioksidanlar ile antioksidan enzimlerin
aktivitelerinin arttırılması, bitki büyüme düzenleyicilerinin ve ozmolit sentezinin tesvik edilmesi, fotosentetik
yolun değistirilmesi, gen ifadesi ve SOS yolu ile iyon alımının düzenlenmesi, stresle ilgili genlerin aktive
edilerek transkripsiyon faktörlerinin sentezlenmesi ve stres proteinlerinin üretiminin tesvik edilmesi önemli
tolerans stratejileridir. Bu derlemede, tuz stresinin etkileri ve tuzluluğa karsı bitkilerin gelistirdikleri tolerans
stratejileri tanıtılacaktır.

TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE
EFFECTS OF SALT STRESS

Salinity is one of the major problems that threat arid and semi-arid areas. Increased salinity in
the agricultural areas disturbs the structure of soil, significantly limits product quality and productivity of
plants. Salt stress causes many problems at morphological, cellular, physiological and molecular levels and in
various development processes in plants. The plants develop various tolerance strategies in response to salt
stress. With in the context of salt stress, increasing non-enzymatic antioxidants and antioxidant enzyme
activities scavenging ROS (Reactive Oxygen Species) as a by product of metabolism, inducing osmolite
biosynthesis and various plant growth regulators, changing the way of the photosynthesis, regulating gene
expression and ion uptake via SOS pathway, and activating stress-related genes to promote the synthesis of
transcription factors and production of stress proteins are important tolerance strategies. In this review, the
effects of salt stress and tolerance strategies developed by plants to salinity are described.

References

  • Gürel A., and Avcıoğlu, R., ‘‘Bitkilerde Strese Dayanıklılık Fizyolojisi’’, 21. bölüm, Editörler: Özcan, S., Gürel, E., Babaoğlu, M., ‘‘Bitki Biyoteknolojisi II, Genetik Mühendisliği ve Uygulamaları’’,
  • Yayınları, 308-313, (2001). Üniversitesi
  • Vakfı [2] Kalefetoğlu, T., and Ekmekçi, Y., ‘‘Bitkilerde kuraklık stresinin etkileri ve dayanıklılık mekanizmaları (Derleme)’’, G.Ü., Fen Bilimleri Dergisi, 18 (4): 723-740 (2005).
  • Mahajan, S., and Tuteja, N., ‘‘Cold, salinity and drought stress: an overview’’, Archives of Biochemistry and Biophysics, 444: 139-158 (2005).
  • Ekmekçi, E., Apan, M., and Kara, T., ‘‘Tuzluluğun bitki gelişimine etkisi’’, OMÜ, Ziraat Fakültesi Dergisi, 20 (3): 118-125 (2005).
  • Munns, R., ‘‘Comparative physiology of salt and water stress’’, Plant, Cell and Environment, 25: 239-250 (2002).
  • Glenn, E.P., Brown, J.J., Khan, M.J., ‘‘Mechanisms of Salt Tolerance in Higher Plants’’, Edited by Basra, A.S., and Basra, R.K., ‘‘Mechanisms of Environmental Stress Resistance in Plants’’, Harwood Academic Publishers, 83- 110, (1997).
  • Bressan, R.A., ‘‘Stres Fizyolojisi’’, Editörler: Taiz, L., Zeiger, E., Çeviri Editörü: Türkan İ., ‘‘Bitki Fizyolojisi’’, Palme Yayıncılık, Ankara, 591-620 (2008).
  • Koca, H., Bor, M., Özdemir, F., and Türkan, İ., ‘‘The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame
  • Experimental Botany, 60: 344-351 (2007). Environmental
  • and [9] Mugdal, V., Madaan, N., and Mudgal, A., ‘‘Biochemical mechanisms of salt tolerance in plants: a review’’, International Journal of Botany, 6 (2):136-143 (2010).
  • Chinnusamy, V., Jagendorf, A., and Zhu, J.- K., ‘‘Understanding and improving salt tolerance in plants’’, Crop Science, 45: 437-448 (2005).
  • Parida, A.K., and Das, A.B., ‘‘Salt tolerance and salinity effects on plants: a review’’, Ecotoxicology and Environmental Safety, 60: 324- 349 (2005).
  • Kuşvuran, Ş., Yaşar, F., Abak, K., and Ellialtıoğlu, Ş., ‘‘Tuz stresi altında yetiştirilen tuza tolerant ve duyarlı Cucumis sp.’nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler’’, Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 18 (1): 13-20 (2008).
  • Erdal, İ., Türkmen, Ö., and Yıldız, M., ‘‘Tuz stresi altında yetiştirilen hıyar (Cucumis sativus L.) fidelerinin gelişimi ve kimi besin maddeleri içeriğindeki
  • gübrelemenin etkisi’’, Yüzüncü Yıl Ün., Ziraat Fakültesi, Tarım Bilimleri Dergisi, 10 (1): 25-29 (2000) üzerine
  • potasyumlu [14] Parvaiz, A., and Satyawati, S., ‘‘Salt stress and phyto-biochemical responses of plants-a review’’, Plant Soil Environment, 54 (3): 89-99 (2008).
  • Ashraf, M., and Haris, P.J.C., ‘‘Potential biochemical indicators of salinity tolerance in plants’’, Plant Science, 166: 3-16 (2004).
  • Amini, F., Ehsanpour, A.A., Hoang, Q.T., and Shin, J.S., ‘‘Protein pattern changes in tomato under in vitro salt stress’’, Russian Journal of Plant Physiology, 54 (4): 464-471 (2007).
  • Ashraf, M., ‘‘Some important physiological selection criteria for salt tolerance in plants’’, Flora, 199: 361-376 (2004).
  • Rahman, S., Matsumuro, T., Miyake, H., and Takeoka, Y., ‘‘Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.)’’, Plant Prod. Sci., 3 (4): 422-429 (2000).
  • Parida, A.K., Das, A.B., and Mittra, B., ‘‘Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Brugueira parviflora chloroplasts’’, Photosynthetica, 41 (2): 191-200 (2003).
  • Yakıt, S., and Tuna, A.L., ‘‘Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine Ca, Mg ve K’un etkileri’’, Akdeniz Üniversitesi, Ziraat Fakültesi Dergisi, 19 (1): 59-67 (2006).
  • Öncel, I., and Keleş, Y., ‘‘Tuz stresi altındaki buğday genotiplerinde büyüme, pigment içeriği ve çözünür madde kompozisyonunda değişmeler’’, C.Ü., Fen-Edebiyat Fakültesi, Fen Bilimleri Dergisi, 23 (2): 8-16 (2002).
  • Ali, Y., Aslam, Z., Ashraf, M.Y., and Tahir, G.R., ‘‘Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment’’,
  • Environmental Science and Technology, 1 (3): 221-225 (2004). Journal
  • of [23] Yıldız, M., Terzi, H., Cenkçi, S., Arıkan Terzi, E.S., and Uruşak, B., ‘‘Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri’’, Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 1 (1): 1-33 (2010).
  • ] Gomez-Canedas, A., Arbona, V., Jacas, J., Primo-Millo, E., and Talon, M, ‘‘Absisic acid reduced leaf abscission and increases salt tolerance in citrus plants’’, J. Plant Growth Regul., 21: 234- 240 (2003). [25] Arzani, A., ‘‘Improwing salinity tolerance in crop plants: a biotechnological review’’, In Vitro Cell Dev. Biol.-Plant, 44: 373- 383 (2008).
  • Sultana, N., Ikeda, T., and Itoh, R., ‘‘Effect of NaCl salinity on photosynthesis and dry matter accumulation in devoloping rice grains’’, Environmental and Experimental Botany, 42: 211- 220 (1999).
  • Koyro, H.-W., ‘‘Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago cronopus (L.)’’, Environmental and Experimental Botany, 56: 136-146 (2006).
  • Meloni, D.A., Oliva, M. A., Martinez, C. A.,
  • and Cambraia, J., ‘‘Photosynthesis and activity of superoxide dismutase and glutathione reductase in cotton under salt stress’’, Environmental and Experimental Botany, 49: 69-76 (2003).
  • Apse, M.P., Blumwald, E., ‘‘Engineering salt tolerance in plants’’, Current Opinion in Biotechnology, 13: 146-150 (2002).
  • Altınışık, M., ‘‘Serbest oksijen radikalleri ve antioksidanlar’’, ADÜ Tıp Fakültesi, Biyokimya AD., Aydın, 2000.
  • Yaşar, F., Ellialtıoğlu, Ş., Özpay, T., and Uzal, Ö., ‘‘Tuz stresinin karpuzda (Citrullus lanatus (Thunb.) Mansf.) antioksidatif enzim (SOD, CAT, APX ve GR) aktivitesi üzerine etkisi’’, Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 18 (1): 61-65 (2008).
  • Zhu, J-K., ‘‘Understanding and improving salt tolerance in plants’’, Crop Science, 45: 437-448 (2005).
  • Neto, A.D.A., Prisco, J.T., Eneas-Filho, J., Abreu, C.E.B., and Gomes-Filho, E., ‘‘Effect of salt stress on antioxidatif enzymes and lipid peroxidation in leaves and roots of salt-tolerant and
  • Environmental and Experimental Botany, 56: 87- 94 (2006). maize
  • genotypes’’, [34] Gechev, T.S., Breusegem, F.V., Stone, J.M., Denev, I., and Laloi, C., ‘‘Reactive oxygen species as signals that modulate plant stress responses and programmed cell death’’, BioEssays, 28: 1091- 1101 (2006).
  • Hernandez, J.A., Jimenez, A., Mullineaux, P., and Sevilla, F., ‘‘Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences’’, Plant, Cell and Environment, 23: 853-862 (2000).
  • Shalata, A., and Tal, M., ‘‘The effect of salt stress on lipit peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt tolerant
  • Physiologia Plantarum, 104: 169-174 (1998).
  • pennellii’’ [37] Holmberg, N., and Bülow, L., ‘‘Improwing stress tolerance in plants by gene transfer’’, Trends in Plant Science, 3 (2): 61-66 (1998).
  • Gupta, S.D., ‘‘Plasma mebrane ultrastructure in embryogenic cultures of orchardgrass during NaCl stress’’, Biologia Plantarum, 51 (4): 759-763 (2007).
  • Mansour, M.M.F., and Salama, K.H.A, ‘‘Cellular basis of salinity tolerance in plants’’, Environmental and Experimental Botany, 52: 113- 122 (2004).
  • Salama, K.H.A., Mansour, M.M.F., Ali, F.Z.M., and Abou-hadid, A.F., ‘‘NaCl-induced, changes in plasma membrane lipids and proteins of Zea mays L. cultivars differing in their response to salinity’’, Acta Physiol Plant, 29: 351-359 (2007). [41] Ghoulam, C., Foursy, A., and Fares, K., ‘‘Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjusment in five sugar beet cultivars’’, Environmental and Experimental Botany, 47: 39- 50 (2002).
  • Borsani, O., Valpuesta, V., and Botella, M.A., ‘‘Devoloping salt tolerant plants in a new century: a molecular biology approach’’, Plant Cell, Tissue and Organ Culture, 73: 101-115 (2003).
  • Türkan, I., and Demiral, T., ‘‘Recent developments in understanding salinity tolerance’’ Environmental and Experimental Botany, 67: 2-9 (2009).
  • Smirnoff, N., ‘‘Plant resistance to environmental stress’’, Current Opinion in Biotechnology, 9: 214-219 (1998).
  • Yokoi, S., Bressan, R.A., and Hasegawa, P.M., ‘‘Salt stress tolerance of plants’’, JIRCAS Working Report, 25-33 (2002).
  • Sairam, R.K., and Tyagi, A., ‘‘Physiology and molecular biology of salinity stress tolerance in plants’’, Current Science, 86 (10): 407-421 (2004). [47] Munns, R., ‘‘Genes and salt tolerance: bringing them together’’, New Phytologist, 167: 645-663 (2005).
  • Flowers, T.J., Garcia, A., Koyama, M., and Yeo, A.R., ‘‘Breeding for salt tolerance in crop plants-the role of molecular biology’’, Acta Physiologia Plantarum, 19 (4): 427-433 (1997)
  • Niknam, V., Bagherzadeh, M., Ebrahimzadeh, H., and Sokhansanj, A., ‘‘Effect of NaCl on biomass and contents of sugars, proline and proteins in seedlings and leaf explants of Nicotiana tabacum grown in vitro’’, Biologia Plantarum, 48 (4): 613-614(2004).
  • Mohamed, A.N., Rahman, M.H., Alsadon, A.A., and Islam, R., ‘‘Accumulation of proline in NaCl-treated callus of six tomato (Lycopersicon esculentum Mill.) cultivars’’, Plant Tissue Cult. & Biotech., 17 (2): 217-220 (2007).
  • Wang, W., Vinocur, B., and Altman, A., ‘‘Plant responses to drougth, salinity and extreme temperatures: towards genetic engineering for stress tolerance’’, Planta, 218: 1-14 (2003).
  • Winicow, I., ‘‘New molecular approaches to improving salt tolerance in crop plants’’, Annals of Botany, 82: 703-710 (1998).
  • Vashisht, A.A., and Tuteja, N., ‘‘Stress responsive DEAD-box helicases: a new pathway to engineer plant stres tolerance’’, Journal of Photochemistry and Photobiology B: Biology, 84: 150-160 (2006).
  • Meng, C., Cai, C., Zhang, T., and Guo, W., ‘‘Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L.’’, Plant Science, 176: 352-359 (2009). [55] Wang, Y., Gao, C., Liang, Y., Wang, C., Yang, C., and Liu, G., ‘‘A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants’’, Journal of Plant Physiology, 167: 222-230 (2010).
  • Kaur, N., and Gupta, A.K., ‘’Signal transduction pathways under abiotic stresses in plants’’, Current Science, 88 (11): 1771-1780 (2005).
  • Agarwal, P.K., Agarwal, P., Reddy, M.K., and Sopory, S.K., ‘‘Role of DREB transcription factors in abiotic and biotic stress tolerance in plants’’, Plant Cell Rep, 25: 1263-1274 (2006).
  • Geliş Tarihi: 10/03/2011
  • Kabul Tarihi:10/06/2011
There are 62 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Emel Yılmaz

A. Levent Tuna This is me

Betül Bürün This is me

Publication Date March 1, 2011
Published in Issue Year 2011 Volume: 7 Issue: 1

Cite

APA Yılmaz, E., Tuna, A. L., & Bürün, B. (2011). BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS. Celal Bayar University Journal of Science, 7(1), 47-66.
AMA Yılmaz E, Tuna AL, Bürün B. BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS. CBUJOS. March 2011;7(1):47-66.
Chicago Yılmaz, Emel, A. Levent Tuna, and Betül Bürün. “BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS”. Celal Bayar University Journal of Science 7, no. 1 (March 2011): 47-66.
EndNote Yılmaz E, Tuna AL, Bürün B (March 1, 2011) BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS. Celal Bayar University Journal of Science 7 1 47–66.
IEEE E. Yılmaz, A. L. Tuna, and B. Bürün, “BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS”, CBUJOS, vol. 7, no. 1, pp. 47–66, 2011.
ISNAD Yılmaz, Emel et al. “BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS”. Celal Bayar University Journal of Science 7/1 (March 2011), 47-66.
JAMA Yılmaz E, Tuna AL, Bürün B. BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS. CBUJOS. 2011;7:47–66.
MLA Yılmaz, Emel et al. “BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS”. Celal Bayar University Journal of Science, vol. 7, no. 1, 2011, pp. 47-66.
Vancouver Yılmaz E, Tuna AL, Bürün B. BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS. CBUJOS. 2011;7(1):47-66.