1. Uysal, A. K., Murphey, Y. L. Sentiment classification: Feature selection based approaches versus deep learning, proceedings of 17th IEEE International Conference on Computer and Information Technology (CIT), 2017, pp. 23-30.
2. Pang, B., Lee, L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts, proceedings of the 42nd annual meeting on Association for Computational Linguistics, 2004, pp. 1-8: Association for Computational Linguistics.
3. Gan, Q., Ferns, B. H., Yu, Y., Jin, L., A Text Mining and Multidimensional Sentiment Analysis of Online Restaurant Reviews, Journal of Quality Assurance in Hospitality & Tourism, 2017, 18(4), 465-492.
4. Gui, L., Zhou, Y., Xu, R., He, Y., Lu, Q., Learning representations from heterogeneous network for sentiment classification of product reviews, Knowledge-Based Systems, 2017, 124, 34-45.
5. Gräßer, F., Kallumadi, S., Malberg, H., Zaunseder, S. Aspect-Based Sentiment Analysis of Drug Reviews Applying Cross-Domain and Cross-Data Learning, proceedings of 2018 International Conference on Digital Health, 2018, pp. 121-125: ACM.
6. Na, J.-C., Kyaing, W. Y. M., Khoo, C. S. G., Foo, S., Chang, Y.-K., Theng, Y.-L. Sentiment Classification of Drug Reviews Using a Rule-Based Linguistic Approach, proceedings of The Outreach of Digital Libraries: A Globalized Resource Network, Berlin, Heidelberg, 2012, pp. 189-198: Springer Berlin Heidelberg.
7. Cavalcanti, D., Prudencio, R. Aspect-Based Opinion Mining in Drug Reviews, proceedings of Portuguese Conference on Artificial Intelligence, 2017, pp. 815-827: Springer.
8. Gopalakrishnan, V., Ramaswamy, C., Patient opinion mining to analyze drugs satisfaction using supervised learning, Journal of Applied Research and Technology, 2017, 15(4), 311-319.
9. Uysal, A. K., Gunal, S., A novel probabilistic feature selection method for text classification, Knowledge-Based Systems, 2012, 36, 226-235.
10. Forman, G., An extensive empirical study of feature selection metrics for text classification, Journal of Machine Learning Research, 2003, 3, 1289-1305.
11. Zong, W., Wu, F., Chu, L.-K., Sculli, D., A discriminative and semantic feature selection method for text categorization, International Journal of Production Economics, 2015, 165, 215-222.
12. Feng, L., Zuo, W., Wang, Y. Improved comprehensive measurement feature selection method for text categorization, proceedings of Network and Information Systems for Computers (ICNISC), 2015 International Conference on, 2015, pp. 125-128.
13. Rehman, A., Javed, K., Babri, H. A., Saeed, M., Relative discrimination criterion – A novel feature ranking method for text data, Expert Systems with Applications, 2015, 42(7), 3670-3681.
14. Joachims, T. Text categorization with support vector machines: Learning with many relevant features, proceedings of 10th European Conference on Machine Learning, Chemnitz, Germany, 1998, vol. 1398, pp. 137-142.
15. Chang, C.-C., Lin, C.-J., LIBSVM: A library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2011, 2(3), 1-27.
16. Jiang, L., Cai, Z., Zhang, H., Wang, D., Naive Bayes text classifiers: A locally weighted learning approach, Journal of Experimental & Theoretical Artificial Intelligence, 2013, 25(2), 273-286.
17. Porter, M. F., An algorithm for suffix stripping, Program, 1980, 14(3), 130-137.
Comparative Performance Analysis of Techniques for Automatic Drug Review Classification
Year 2018,
Volume: 14 Issue: 4, 485 - 490, 28.12.2018
1. Uysal, A. K., Murphey, Y. L. Sentiment classification: Feature selection based approaches versus deep learning, proceedings of 17th IEEE International Conference on Computer and Information Technology (CIT), 2017, pp. 23-30.
2. Pang, B., Lee, L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts, proceedings of the 42nd annual meeting on Association for Computational Linguistics, 2004, pp. 1-8: Association for Computational Linguistics.
3. Gan, Q., Ferns, B. H., Yu, Y., Jin, L., A Text Mining and Multidimensional Sentiment Analysis of Online Restaurant Reviews, Journal of Quality Assurance in Hospitality & Tourism, 2017, 18(4), 465-492.
4. Gui, L., Zhou, Y., Xu, R., He, Y., Lu, Q., Learning representations from heterogeneous network for sentiment classification of product reviews, Knowledge-Based Systems, 2017, 124, 34-45.
5. Gräßer, F., Kallumadi, S., Malberg, H., Zaunseder, S. Aspect-Based Sentiment Analysis of Drug Reviews Applying Cross-Domain and Cross-Data Learning, proceedings of 2018 International Conference on Digital Health, 2018, pp. 121-125: ACM.
6. Na, J.-C., Kyaing, W. Y. M., Khoo, C. S. G., Foo, S., Chang, Y.-K., Theng, Y.-L. Sentiment Classification of Drug Reviews Using a Rule-Based Linguistic Approach, proceedings of The Outreach of Digital Libraries: A Globalized Resource Network, Berlin, Heidelberg, 2012, pp. 189-198: Springer Berlin Heidelberg.
7. Cavalcanti, D., Prudencio, R. Aspect-Based Opinion Mining in Drug Reviews, proceedings of Portuguese Conference on Artificial Intelligence, 2017, pp. 815-827: Springer.
8. Gopalakrishnan, V., Ramaswamy, C., Patient opinion mining to analyze drugs satisfaction using supervised learning, Journal of Applied Research and Technology, 2017, 15(4), 311-319.
9. Uysal, A. K., Gunal, S., A novel probabilistic feature selection method for text classification, Knowledge-Based Systems, 2012, 36, 226-235.
10. Forman, G., An extensive empirical study of feature selection metrics for text classification, Journal of Machine Learning Research, 2003, 3, 1289-1305.
11. Zong, W., Wu, F., Chu, L.-K., Sculli, D., A discriminative and semantic feature selection method for text categorization, International Journal of Production Economics, 2015, 165, 215-222.
12. Feng, L., Zuo, W., Wang, Y. Improved comprehensive measurement feature selection method for text categorization, proceedings of Network and Information Systems for Computers (ICNISC), 2015 International Conference on, 2015, pp. 125-128.
13. Rehman, A., Javed, K., Babri, H. A., Saeed, M., Relative discrimination criterion – A novel feature ranking method for text data, Expert Systems with Applications, 2015, 42(7), 3670-3681.
14. Joachims, T. Text categorization with support vector machines: Learning with many relevant features, proceedings of 10th European Conference on Machine Learning, Chemnitz, Germany, 1998, vol. 1398, pp. 137-142.
15. Chang, C.-C., Lin, C.-J., LIBSVM: A library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2011, 2(3), 1-27.
16. Jiang, L., Cai, Z., Zhang, H., Wang, D., Naive Bayes text classifiers: A locally weighted learning approach, Journal of Experimental & Theoretical Artificial Intelligence, 2013, 25(2), 273-286.
17. Porter, M. F., An algorithm for suffix stripping, Program, 1980, 14(3), 130-137.
Uysal, A. K. (2018). Comparative Performance Analysis of Techniques for Automatic Drug Review Classification. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(4), 485-490. https://doi.org/10.18466/cbayarfbe.481096
AMA
Uysal AK. Comparative Performance Analysis of Techniques for Automatic Drug Review Classification. CBUJOS. December 2018;14(4):485-490. doi:10.18466/cbayarfbe.481096
Chicago
Uysal, Alper Kürşat. “Comparative Performance Analysis of Techniques for Automatic Drug Review Classification”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14, no. 4 (December 2018): 485-90. https://doi.org/10.18466/cbayarfbe.481096.
EndNote
Uysal AK (December 1, 2018) Comparative Performance Analysis of Techniques for Automatic Drug Review Classification. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 4 485–490.
IEEE
A. K. Uysal, “Comparative Performance Analysis of Techniques for Automatic Drug Review Classification”, CBUJOS, vol. 14, no. 4, pp. 485–490, 2018, doi: 10.18466/cbayarfbe.481096.
ISNAD
Uysal, Alper Kürşat. “Comparative Performance Analysis of Techniques for Automatic Drug Review Classification”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14/4 (December 2018), 485-490. https://doi.org/10.18466/cbayarfbe.481096.
JAMA
Uysal AK. Comparative Performance Analysis of Techniques for Automatic Drug Review Classification. CBUJOS. 2018;14:485–490.
MLA
Uysal, Alper Kürşat. “Comparative Performance Analysis of Techniques for Automatic Drug Review Classification”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 4, 2018, pp. 485-90, doi:10.18466/cbayarfbe.481096.
Vancouver
Uysal AK. Comparative Performance Analysis of Techniques for Automatic Drug Review Classification. CBUJOS. 2018;14(4):485-90.