Research Article
BibTex RIS Cite
Year 2020, Volume: 16 Issue: 2, 215 - 224, 24.06.2020

Abstract

References

  • [1]. Agrachev, AA, Sachkov, YL. An intrinsic approach to the control of rolling bodies, in Proc. 38th IEEE Conf. Decis. Control, Phoenix, AZ, USA; 1999, pp 431–435.
  • [2]. Birman, GS, Nomizu, K. 1984. Trigonometry in Lorentzian Geometry, Ann. Math. Month., 91(9): 543-549.
  • [3]. Bottema, O, Roth, B. Theoretical Kinematics; North-Holland Publ. Co.: Amsterdam, 1979; pp 556.
  • [4]. Cai, C, Roth, B. On the spatial motion of rigid bodies with point contact, in Proc. IEEE Conf. Robot. Autom.; 1987, pp 686–695.
  • [5]. Cai, C, Roth, B. 1986. On the planar motion of rigid bodies with point contact, Mech. Mach. Theory, 21: 453–466.
  • [6]. Chelouah, A, Chitour, Y. 2003. On the motion planning of rolling surfaces, Forum Math., 15(5): 727–758.
  • [7]. Chitour, Y, Marigo, A, Piccoli, B. 2005. Quantization of the rolling-body problem with applications to motion planning, Syst. Control Lett., 54(10): 999–1013.
  • [8]. Cui, L, Dai, JS. 2010. A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact, IEEE Trans. Rob., 26(2): 383–388.
  • [9]. Cui, L. Differential Geometry Based Kinematics of Sliding-Rolling Contact and Its Use for Multifingered Hands, Ph.D. thesis, King’s College London, University of London, London, UK, 2010.
  • [10]. Cui, L, Dai, JS. 2015. A Polynomial Formulation of Inverse Kinematics of Rolling Contact, ASME J. Mech. Rob., 7(4): 041003_041001-041009.
  • [11]. Do Carmo, MP. Differential Geometry of Curves and Surfaces; Prentice-Hall: Englewood Cliffs, New Jersey, 1976.
  • [12]. Karger, A, Novak, J. Space Kinematics and Lie Groups; STNL Publishers of Technical Lit.: Prague, Czechoslovakia, 1978.
  • [13]. Li, ZX, Canny, J. 1990. Motion of two rigid bodies with rolling constraint, IEEE Trans. Robot. Autom., 6(1): 62–72.
  • [14]. Marigo, A, Bicchi, A. 2000. Rolling bodies with regular surface: Controllability theory and application, IEEE Trans. Autom. Control, 45(9): 1586–1599.
  • [15]. Montana, DJ. 1995. The kinematics of multi-fingered manipulation, IEEE Trans. Robot. Autom., 11(4): 491–503.
  • [16]. Müller, HR. Kinematik Dersleri; Ankara Üniversitesi Fen Fakültesi Yayınları, 1963.
  • [17]. Neimark, JI, Fufaev, NA. Dynamics of Nonholonomic Systems; Providence, RI: Amer. Math. Soc., 1972.
  • [18]. Nelson, EW, Best CL, McLean, WG. Schaum’s Outline of Theory and Problems of Engineering Mechanics, Statics and Dynamics (5th Ed.); McGraw-Hill: New York, 1997.
  • [19]. O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press: London, 1983.
  • [20]. Ratcliffe, JG. Foundations of Hyperbolic Manifolds; Springer: New York, 2006.
  • [21]. Sarkar, N, Kumar, V, Yun, X. 1996. Velocity and Acceleration Analysis of Contact Between Three-Dimensional Rigid Bodies, ASME J. Appl. Mech., 63(4): 974–984.
  • [22]. Tchon, K. 2002. Repeatability of inverse kinematics algorithms for mobile manipulators, IEEE Trans. Autom. Control, 47(8): 1376– 1380.
  • [23]. Tchon, K, Jakubiak, J. An extended Jacobian inverse kinematics algorithm for doubly nonholonomic mobile manipulators, in Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain; 2005, pp 1548–1553.
  • [24]. Uğurlu HH, Çalışkan, A. Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi; Celal Bayar Üniversitesi Yayınları: Manisa, 2012.

The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces

Year 2020, Volume: 16 Issue: 2, 215 - 224, 24.06.2020

Abstract

The aim of the
present study is to investigate the forward kinematics of spin-rolling contact
motion of one timelike surface on another
timelike surface along their timelike trajectory curves in Lorentzian 3-space.
This study does not take sliding motion into consideration but applies a new
Darboux frame method to establish the kinematics of spin-rolling motion.

References

  • [1]. Agrachev, AA, Sachkov, YL. An intrinsic approach to the control of rolling bodies, in Proc. 38th IEEE Conf. Decis. Control, Phoenix, AZ, USA; 1999, pp 431–435.
  • [2]. Birman, GS, Nomizu, K. 1984. Trigonometry in Lorentzian Geometry, Ann. Math. Month., 91(9): 543-549.
  • [3]. Bottema, O, Roth, B. Theoretical Kinematics; North-Holland Publ. Co.: Amsterdam, 1979; pp 556.
  • [4]. Cai, C, Roth, B. On the spatial motion of rigid bodies with point contact, in Proc. IEEE Conf. Robot. Autom.; 1987, pp 686–695.
  • [5]. Cai, C, Roth, B. 1986. On the planar motion of rigid bodies with point contact, Mech. Mach. Theory, 21: 453–466.
  • [6]. Chelouah, A, Chitour, Y. 2003. On the motion planning of rolling surfaces, Forum Math., 15(5): 727–758.
  • [7]. Chitour, Y, Marigo, A, Piccoli, B. 2005. Quantization of the rolling-body problem with applications to motion planning, Syst. Control Lett., 54(10): 999–1013.
  • [8]. Cui, L, Dai, JS. 2010. A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact, IEEE Trans. Rob., 26(2): 383–388.
  • [9]. Cui, L. Differential Geometry Based Kinematics of Sliding-Rolling Contact and Its Use for Multifingered Hands, Ph.D. thesis, King’s College London, University of London, London, UK, 2010.
  • [10]. Cui, L, Dai, JS. 2015. A Polynomial Formulation of Inverse Kinematics of Rolling Contact, ASME J. Mech. Rob., 7(4): 041003_041001-041009.
  • [11]. Do Carmo, MP. Differential Geometry of Curves and Surfaces; Prentice-Hall: Englewood Cliffs, New Jersey, 1976.
  • [12]. Karger, A, Novak, J. Space Kinematics and Lie Groups; STNL Publishers of Technical Lit.: Prague, Czechoslovakia, 1978.
  • [13]. Li, ZX, Canny, J. 1990. Motion of two rigid bodies with rolling constraint, IEEE Trans. Robot. Autom., 6(1): 62–72.
  • [14]. Marigo, A, Bicchi, A. 2000. Rolling bodies with regular surface: Controllability theory and application, IEEE Trans. Autom. Control, 45(9): 1586–1599.
  • [15]. Montana, DJ. 1995. The kinematics of multi-fingered manipulation, IEEE Trans. Robot. Autom., 11(4): 491–503.
  • [16]. Müller, HR. Kinematik Dersleri; Ankara Üniversitesi Fen Fakültesi Yayınları, 1963.
  • [17]. Neimark, JI, Fufaev, NA. Dynamics of Nonholonomic Systems; Providence, RI: Amer. Math. Soc., 1972.
  • [18]. Nelson, EW, Best CL, McLean, WG. Schaum’s Outline of Theory and Problems of Engineering Mechanics, Statics and Dynamics (5th Ed.); McGraw-Hill: New York, 1997.
  • [19]. O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press: London, 1983.
  • [20]. Ratcliffe, JG. Foundations of Hyperbolic Manifolds; Springer: New York, 2006.
  • [21]. Sarkar, N, Kumar, V, Yun, X. 1996. Velocity and Acceleration Analysis of Contact Between Three-Dimensional Rigid Bodies, ASME J. Appl. Mech., 63(4): 974–984.
  • [22]. Tchon, K. 2002. Repeatability of inverse kinematics algorithms for mobile manipulators, IEEE Trans. Autom. Control, 47(8): 1376– 1380.
  • [23]. Tchon, K, Jakubiak, J. An extended Jacobian inverse kinematics algorithm for doubly nonholonomic mobile manipulators, in Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain; 2005, pp 1548–1553.
  • [24]. Uğurlu HH, Çalışkan, A. Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi; Celal Bayar Üniversitesi Yayınları: Manisa, 2012.
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mehmet Aydınalp 0000-0002-5601-866X

Mustafa Kazaz 0000-0002-7201-9179

Hasan Hüseyin Uğurlu 0000-0002-9900-6634

Publication Date June 24, 2020
Published in Issue Year 2020 Volume: 16 Issue: 2

Cite

APA Aydınalp, M., Kazaz, M., & Uğurlu, H. H. (2020). The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 16(2), 215-224.
AMA Aydınalp M, Kazaz M, Uğurlu HH. The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces. CBUJOS. June 2020;16(2):215-224.
Chicago Aydınalp, Mehmet, Mustafa Kazaz, and Hasan Hüseyin Uğurlu. “The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16, no. 2 (June 2020): 215-24.
EndNote Aydınalp M, Kazaz M, Uğurlu HH (June 1, 2020) The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16 2 215–224.
IEEE M. Aydınalp, M. Kazaz, and H. H. Uğurlu, “The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces”, CBUJOS, vol. 16, no. 2, pp. 215–224, 2020.
ISNAD Aydınalp, Mehmet et al. “The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16/2 (June 2020), 215-224.
JAMA Aydınalp M, Kazaz M, Uğurlu HH. The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces. CBUJOS. 2020;16:215–224.
MLA Aydınalp, Mehmet et al. “The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 16, no. 2, 2020, pp. 215-24.
Vancouver Aydınalp M, Kazaz M, Uğurlu HH. The Forward Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces. CBUJOS. 2020;16(2):215-24.