Research Article
BibTex RIS Cite
Year 2020, Volume: 16 Issue: 3, 307 - 321, 29.09.2020
https://doi.org/10.18466/cbayarfbe.740343

Abstract

References

  • 1. Lee, J., Davari, H., Singh, J. ve Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20–23. doi:10.1016/j.mfglet.2018.09.002.
  • 2. Hecht-Nielsen, R. (1990). Neurocomputing, Addison. Wesely Publishing Company. Hornik, K. Stinchcombe, M. White, H.(1989). Multilayer feedforward networks are universal approximators, Neural Networks, 2(359366), 3168–3176.
  • 3. Basheer, I. A. ve Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 43(1), 3–31.
  • 4. Shaban, S. E., Hazzaa, M. H. ve El-Tayebany, R. A. (2019). Applying Monte Carlo and artificial intelligence techniques for 235U mass prediction in samples with different enrichments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 916, 322–326. doi:10.1016/j.nima.2018.10.008.
  • 5. Marugán, A. P., Márquez, F. P. G., Perez, J. M. P. ve Ruiz-Hernández, D. (2018). A survey of artificial neural network in wind energy systems. Applied energy, 228, 1822–1836.
  • 6. Kruse, R., Borgelt, C., Braune, C., Mostaghim, S. ve Steinbrecher, M. (2016). Multilayer perceptrons. Computational Intelligence içinde (ss. 47–92). Springer.
  • 7. Zhang, J. ve Li, J. (2020). Testing and verification of neural-network-based safety-critical control software: A systematic literature review. Information and Software Technology, 106296.
  • 8. Anderson, D. ve McNeill, G. (1992). Artificial neural networks technology. Kaman Sciences Corporation, 258(6), 1–83.
  • 9. Zhang, S., Zhai, B., Guo, X., Wang, K., Peng, N. ve Zhang, X. (2019). Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks. Journal of Energy Storage, 26, 100951.
  • 10. Gardner, M. W. ve Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment, 32(14–15), 2627–2636.
  • 11. Lu, Y., Sun, L., Zhang, X., Feng, F., Kang, J. ve Fu, G. (2018). Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach. Applied Ocean Research, 74, 69–79.
  • 12. Berecibar, M., Devriendt, F., Dubarry, M., Villarreal, I., Omar, N., Verbeke, W. ve Van Mierlo, J. (2016). Online state of health estimation on NMC cells based on predictive analytics. Journal of Power Sources, 320, 239–250.
  • 13. Sun, W. ve Xu, Y. (2016). Financial security evaluation of the electric power industry in China based on a back propagation neural network optimized by genetic algorithm. Energy, 101, 366–379.
  • 14. Wang, J., Zhao, X., Guo, X. ve Li, B. (2018). Analyzing the research subjects and hot topics of power system reliability through the Web of Science from 1991 to 2015. Renewable and Sustainable Energy Reviews, 82, 700–713. doi:10.1016/j.rser.2017.09.064.
  • 15. Pngio. (2020). Electric Power Distribution. CRC Press. https://pngio.com/images/png-a1356339.html (accessed at 05.17.2020)
  • 16. Mohamed, E. A. ve Rao, N. D. (1995). Artificial neural network based fault diagnostic system for electric power distribution feeders. Electric Power Systems Research, 35(1), 1–10.
  • 17. Yongxing, C., Yufang, Z. ve Hongyu, Z. (2017). Real-time Evaluation Model of Power Line Fault Probability based on Multiple Meteorological factors. Procedia Computer Science, 107, 231–235. doi:10.1016/j.procs.2017.03.084.
  • 18. McElroy, A. J. (1975). On the significance of recent EHV transformer failures involving winding resonance. IEEE Transactions on Power Apparatus and Systems, 94(4), 1301–1316. doi:10.1109/T-PAS.1975.31968.
  • 19. Coughlin, K. ve Goldman, C. (2008). Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study. Lawrence Berkeley National Laboratory, 29. http://escholarship.org/uc/item/8rc6q28 adresinden erişildi.
  • 20. Baqqar, M. (2015). Machine Performance and Condition Monitoring Using Motor Operating Parameters Through Artificial Intelligence Techniques. University of Huddersfield.
  • 21. Cristaldi, L., Leone, G., Ottoboni, R., Subbiah, S. ve Turrin, S. (2016). A comparative study on data-driven prognostic approaches using fleet knowledge. 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings içinde (ss. 1–6).IEEE.
  • 22. Seidgar, H., Zandieh, M. ve Mahdavi, I. (2017). An efficient meta-heuristic algorithm for scheduling a two-stage assembly flow shop problem with preventive maintenance activities and reliability approach. International Journal of Industrial and Systems Engineering, 26(1), 16–41.
  • 23. Diez-Olivan, A., Del Ser, J., Galar, D. ve Sierra, B. (2019). Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Information Fusion, 50, 92–111. doi:10.1016/j.inffus.2018.10.005.
  • 24. Mousavian, S., Valenzuela, J. ve Wang, J. (2013). Real-time data reassurance in electrical power systems based on artificial neural networks. Electric Power Systems Research, 96, 285–295.
  • 25. Silva, S., Costa, P., Gouvea, M., Lacerda, A., Alves, F. ve Leite, D. (2018). High impedance fault detection in power distribution systems using wavelet transform and evolving neural network. Electric Power Systems Research, 154, 474–483.
  • 26. Saviozzi, M., Massucco, S. ve Silvestro, F. (2019). Implementation of advanced functionalities for Distribution Management Systems: Load forecasting and modeling through Artificial Neural Networks ensembles. Electric Power Systems Research, 167, 230–239. doi:10.1016/j.epsr.2018.10.036.
  • 27. Đozić, D. J. ve Urošević, B. D. G. (2019). Application of artificial neural networks for testing long-term energy policy targets. Energy, 174, 488–496.
  • 28. Khwaja, A. S., Anpalagan, A., Naeem, M. ve Venkatesh, B. (2020). Joint bagged-boosted artificial neural networks: Using ensemble machine learning to improve short-term electricity load forecasting. Electric Power Systems Research, 179, 106080. doi:10.1016/j.epsr.2019.106080.
  • 29. Carta, J. A., Ramirez, P. ve Velazquez, S. (2009). A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands. Renewable and sustainable energy reviews, 13(5), 933–955.
  • 30. Lawan, S. M., Abidin, W. A. W. Z. ve Masri, T. (2019). Implementation of a topographic artificial neural network wind speed prediction model for assessing onshore wind power potential in Sibu, Sarawak. Egyptian Journal of Remote Sensing and Space Science. doi:10.1016/j.ejrs.2019.08.003.

Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey)

Year 2020, Volume: 16 Issue: 3, 307 - 321, 29.09.2020
https://doi.org/10.18466/cbayarfbe.740343

Abstract

Electricity distribution networks are critical to the delivery of energy and the continuity of the economy. The healthy and efficient operation of these networks depends on the prediction of failures, their early detection and the rapid recovery of the resulting failures. The causes of failure are internal and external factors. Many studies in different sectors that use different techniques for failure prediction in the literature. The use of artificial intelligence techniques, which are becoming increasingly important today, in failure estimates; in terms of estimation success and effectiveness, it brings many privileges compared to other techniques. In this study, a status prediction model has been developed by using artificial neural network (ANN) technique for power outages and healthy working conditions of the electricity distribution network installed in Salihli district of Manisa province. In previous studies, using artificial intelligence techniques in the energy sector generally focused on one component of network, lifetime, energy demand estimation, battery life and goods failures. The effect of meteorological factors has not been studied on the distribution network situation using artificial intelligence techniques. In this study we use hourly power outages and hourly meteorological factors that cause failures or healthy conditions. It is aimed to effective risk management and make anticipation of power outage occurring in electricity transmission network, to make preventive maintenance for failures, to make suggestions for early intervention and shortening downtime and maintenance.

References

  • 1. Lee, J., Davari, H., Singh, J. ve Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20–23. doi:10.1016/j.mfglet.2018.09.002.
  • 2. Hecht-Nielsen, R. (1990). Neurocomputing, Addison. Wesely Publishing Company. Hornik, K. Stinchcombe, M. White, H.(1989). Multilayer feedforward networks are universal approximators, Neural Networks, 2(359366), 3168–3176.
  • 3. Basheer, I. A. ve Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 43(1), 3–31.
  • 4. Shaban, S. E., Hazzaa, M. H. ve El-Tayebany, R. A. (2019). Applying Monte Carlo and artificial intelligence techniques for 235U mass prediction in samples with different enrichments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 916, 322–326. doi:10.1016/j.nima.2018.10.008.
  • 5. Marugán, A. P., Márquez, F. P. G., Perez, J. M. P. ve Ruiz-Hernández, D. (2018). A survey of artificial neural network in wind energy systems. Applied energy, 228, 1822–1836.
  • 6. Kruse, R., Borgelt, C., Braune, C., Mostaghim, S. ve Steinbrecher, M. (2016). Multilayer perceptrons. Computational Intelligence içinde (ss. 47–92). Springer.
  • 7. Zhang, J. ve Li, J. (2020). Testing and verification of neural-network-based safety-critical control software: A systematic literature review. Information and Software Technology, 106296.
  • 8. Anderson, D. ve McNeill, G. (1992). Artificial neural networks technology. Kaman Sciences Corporation, 258(6), 1–83.
  • 9. Zhang, S., Zhai, B., Guo, X., Wang, K., Peng, N. ve Zhang, X. (2019). Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks. Journal of Energy Storage, 26, 100951.
  • 10. Gardner, M. W. ve Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment, 32(14–15), 2627–2636.
  • 11. Lu, Y., Sun, L., Zhang, X., Feng, F., Kang, J. ve Fu, G. (2018). Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach. Applied Ocean Research, 74, 69–79.
  • 12. Berecibar, M., Devriendt, F., Dubarry, M., Villarreal, I., Omar, N., Verbeke, W. ve Van Mierlo, J. (2016). Online state of health estimation on NMC cells based on predictive analytics. Journal of Power Sources, 320, 239–250.
  • 13. Sun, W. ve Xu, Y. (2016). Financial security evaluation of the electric power industry in China based on a back propagation neural network optimized by genetic algorithm. Energy, 101, 366–379.
  • 14. Wang, J., Zhao, X., Guo, X. ve Li, B. (2018). Analyzing the research subjects and hot topics of power system reliability through the Web of Science from 1991 to 2015. Renewable and Sustainable Energy Reviews, 82, 700–713. doi:10.1016/j.rser.2017.09.064.
  • 15. Pngio. (2020). Electric Power Distribution. CRC Press. https://pngio.com/images/png-a1356339.html (accessed at 05.17.2020)
  • 16. Mohamed, E. A. ve Rao, N. D. (1995). Artificial neural network based fault diagnostic system for electric power distribution feeders. Electric Power Systems Research, 35(1), 1–10.
  • 17. Yongxing, C., Yufang, Z. ve Hongyu, Z. (2017). Real-time Evaluation Model of Power Line Fault Probability based on Multiple Meteorological factors. Procedia Computer Science, 107, 231–235. doi:10.1016/j.procs.2017.03.084.
  • 18. McElroy, A. J. (1975). On the significance of recent EHV transformer failures involving winding resonance. IEEE Transactions on Power Apparatus and Systems, 94(4), 1301–1316. doi:10.1109/T-PAS.1975.31968.
  • 19. Coughlin, K. ve Goldman, C. (2008). Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study. Lawrence Berkeley National Laboratory, 29. http://escholarship.org/uc/item/8rc6q28 adresinden erişildi.
  • 20. Baqqar, M. (2015). Machine Performance and Condition Monitoring Using Motor Operating Parameters Through Artificial Intelligence Techniques. University of Huddersfield.
  • 21. Cristaldi, L., Leone, G., Ottoboni, R., Subbiah, S. ve Turrin, S. (2016). A comparative study on data-driven prognostic approaches using fleet knowledge. 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings içinde (ss. 1–6).IEEE.
  • 22. Seidgar, H., Zandieh, M. ve Mahdavi, I. (2017). An efficient meta-heuristic algorithm for scheduling a two-stage assembly flow shop problem with preventive maintenance activities and reliability approach. International Journal of Industrial and Systems Engineering, 26(1), 16–41.
  • 23. Diez-Olivan, A., Del Ser, J., Galar, D. ve Sierra, B. (2019). Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Information Fusion, 50, 92–111. doi:10.1016/j.inffus.2018.10.005.
  • 24. Mousavian, S., Valenzuela, J. ve Wang, J. (2013). Real-time data reassurance in electrical power systems based on artificial neural networks. Electric Power Systems Research, 96, 285–295.
  • 25. Silva, S., Costa, P., Gouvea, M., Lacerda, A., Alves, F. ve Leite, D. (2018). High impedance fault detection in power distribution systems using wavelet transform and evolving neural network. Electric Power Systems Research, 154, 474–483.
  • 26. Saviozzi, M., Massucco, S. ve Silvestro, F. (2019). Implementation of advanced functionalities for Distribution Management Systems: Load forecasting and modeling through Artificial Neural Networks ensembles. Electric Power Systems Research, 167, 230–239. doi:10.1016/j.epsr.2018.10.036.
  • 27. Đozić, D. J. ve Urošević, B. D. G. (2019). Application of artificial neural networks for testing long-term energy policy targets. Energy, 174, 488–496.
  • 28. Khwaja, A. S., Anpalagan, A., Naeem, M. ve Venkatesh, B. (2020). Joint bagged-boosted artificial neural networks: Using ensemble machine learning to improve short-term electricity load forecasting. Electric Power Systems Research, 179, 106080. doi:10.1016/j.epsr.2019.106080.
  • 29. Carta, J. A., Ramirez, P. ve Velazquez, S. (2009). A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands. Renewable and sustainable energy reviews, 13(5), 933–955.
  • 30. Lawan, S. M., Abidin, W. A. W. Z. ve Masri, T. (2019). Implementation of a topographic artificial neural network wind speed prediction model for assessing onshore wind power potential in Sibu, Sarawak. Egyptian Journal of Remote Sensing and Space Science. doi:10.1016/j.ejrs.2019.08.003.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mahmut Sayar 0000-0002-1852-6276

Hilmi Yüksel

Publication Date September 29, 2020
Published in Issue Year 2020 Volume: 16 Issue: 3

Cite

APA Sayar, M., & Yüksel, H. (2020). Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey). Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 16(3), 307-321. https://doi.org/10.18466/cbayarfbe.740343
AMA Sayar M, Yüksel H. Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey). CBUJOS. September 2020;16(3):307-321. doi:10.18466/cbayarfbe.740343
Chicago Sayar, Mahmut, and Hilmi Yüksel. “Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey)”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16, no. 3 (September 2020): 307-21. https://doi.org/10.18466/cbayarfbe.740343.
EndNote Sayar M, Yüksel H (September 1, 2020) Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey). Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16 3 307–321.
IEEE M. Sayar and H. Yüksel, “Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey)”, CBUJOS, vol. 16, no. 3, pp. 307–321, 2020, doi: 10.18466/cbayarfbe.740343.
ISNAD Sayar, Mahmut - Yüksel, Hilmi. “Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey)”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16/3 (September 2020), 307-321. https://doi.org/10.18466/cbayarfbe.740343.
JAMA Sayar M, Yüksel H. Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey). CBUJOS. 2020;16:307–321.
MLA Sayar, Mahmut and Hilmi Yüksel. “Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey)”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 16, no. 3, 2020, pp. 307-21, doi:10.18466/cbayarfbe.740343.
Vancouver Sayar M, Yüksel H. Real-Time Prediction of Electricity Distribution Network Status Using Artificial Neural Network Model: A Case Study in Salihli (Manisa, Turkey). CBUJOS. 2020;16(3):307-21.