Year 2020, Volume 16 , Issue 3, Pages 269 - 279 2020-09-29

Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis

Gozde Basak OZTURK [1] , Mert TUNCA [2]


The intense association of the architecture, engineering, construction, operation, and facility management (AECO/FM) industry with cognitive and behavioral technologies leads to the increase in productivity of industry activities. In light of these thoughts, the building information modeling (BIM) platform is included in the AECO/FM industry to further increase efficiency and deliver construction projects economically, timely, and safely. While the BIM platform can work integrated with many programs and systems, concepts that offer innovative and fast solutions such as artificial intelligence (AI) benefit the AECO/FM industry. The main aim of this study is to understand the tendency of AI in BIM research carried out in different countries and by various scholars. This study adopts a bibliometric search, and a scientometric analysis and mapping approach with applying document-based citation analysis, country-based citation analysis, and country-based bibliographic coupling analysis of scientific research of AI and BIM integration. Data on the use of AI and BIM has been collected by reviewing and screening articles selected from the Scopus database. The results reveal that information management, decision support systems, genetic algorithms, neural networks, knowledge-based systems, machine learning, and deep learning effect AI in BIM research. This article contributes to the AECO/FM literature by analyzing and visualizing the current status and relationship between AI and BIM. Therefore, the findings highlight the gaps and trends in AI and BIM studies and provide new recommendations for future studies.
Artificial Intelligence, Building Information Modeling, Scientometric Analysis, Scientometric Mapping
  • 1. Liu Z, Lu Y, Peh L C (2019) A review and scientometric analysis of Global Building Information Modeling (BIM) Research in the Architecture, Engineering and Construction (AEC) industry. Buildings, 9, 10 DOI: 10.3390/buildings9100210.
  • 2. Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K (2017) Semantic interoperability in the Internet of Things: An overview from the INTER-IoT perspective. Journal of Network and Computer Applications, 81, 111-124 DOI: 10.1016/j.jnca.2016.08.007.
  • 3. Aljobaly O, Banawi A (2020) Evaluation of the Saudi Construction Industry for Adoption of Building Information Modelling. Advances in Artificial Intelligence, Software and Systems Engineering. 488-498 DOI: 10.1007/978-3-030-20454-9_49.
  • 4. Parveen, R. (2018). Artificial intelligence in construction industry: Legal issues and regulatory challenges. International Journal of Civil Engineering and Technology, 9(13), 957-962.
  • 5. Guzmán, J.I. And Malcolm, A.A. (2002) "Autonomous vehicles in the construction process", Construction Innovation, Vol. 2 Issue: 3, pp.211- 224, https://doi.org/10.1108/14714170210814775.
  • 6. Li, C. Z., Xue, F., Li, X., Hong, J., and Shen, G. Q. (2018). An internet of things-enabled BIM platform for on-site assembly services in prefabricated construction. Automation in Construction, 89, 146-161. doi:10.1016/j.autcon.2018.01.001. 7. Bruno, S., De Fino, M., and Fatiguso, F. (2018). Historic building information modelling: Performance assessment for diagnosis-aided information modelling and management. Automation in Construction, 86, 256-276. doi:10.1016/j.autcon.2017.11.009.
  • 8. O'Dwyer, E., Pan, I., Acha, S., and Shah, N. (2019). Smart energy systems for sustainable smart cities: Current developments, trends and future directions. Applied Energy, 237, 581-597. doi:10.1016/j.apenergy.2019.01.024.
  • 9. Hwang, B., Shan, M., and Looi, K. (2018). Knowledge-based decision support system for prefabricated prefinished volumetric construction. Automation in Construction, 94, 168-178. doi:10.1016/j.autcon.2018.06.016.
  • 10. Sacks, R., Girolami, M., Brilakis, I. (2020). Building Information Modelling, Artificial Intelligence and Construction Tech, Developments in the Built Environment, 100011, ISSN 2666-1659, https://doi.org/10.1016/j.dibe.2020.100011. 11. Ozturk, G.B. Interoperability in building information modeling for AECO/FM industry. Automation in Construction, 2020, 113, 103122. https://doi.org/10.1016/j.autcon.2020.103122. 12. Xu, Y.; Zeng, J.; Chen, W.; Jin, R.; Li, B.; and Pan, Z. (2018). “A holistic review of cement composites reinforced with graphene oxide”, Construction Building Materials, Vol. 171, pp.291–302. https:// doi.org/10.1016/j.conbuildmat.2018.03.147. 13. Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; and Herrera, F. (2011). “An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field”, Journal of Informetrics, Vol. 5 No. 1, pp.146-166. https:// doi.org/10.1016/j.joi.2010.10.002.
  • 14. Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; and Chileshe, N. (2018). “Critical evaluation of off-site construction research: a scientometric analysis”, Automation in Construction, Vol. 87, pp.235–247. https://doi.org/10.1016/j.autcon.2017.12. 002.
  • 15. Van Eck, N.J. and Waltman, L. (2014). “Visualizing bibliometric networks”, in: Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring Scholarly Impact: Methods and Practice, Springer, Cham, pp. 285–320. http://dx.doi.org/10.1007/978-3-319-10377-8_13. 16. Natephra, W., Yabuki, N., and Fukuda, T. (2018). Optimizing the evaluation of building envelope design for thermal performance using a BIM-based overall thermal transfer value calculation. Building and Environment, 136, 128-145. doi:10.1016/j.buildenv.2018.03.032. 17. Parra, J., Pérez-Pons, M., and González, J. (2021). Technology as a lever for the evolution and recovery of the financial and construction sectors in Spain doi:10.1007/978-3-030-53829-3_17.
  • 18. Khairulzaman, H. A., and Usman, F. (2018). Automation in civil engineering design in assessing building energy efficiency. International Journal of Engineering and Technology, 7(4), 722-727. doi:10.14419/ijet.v7i4.35.2309. 19. Bruno S, Fino M D, Fatiguso F (2018) Automation in Construction Historic Building Information Modelling: performance assessment for diagnosis-aided information modelling and management. Automation in Construction. 86, December 2017, 256-276 DOI: 10.1016/j.autcon.2017.11.009. 20. Chen K, Lu W, Peng Y, Rowlinson S, Huang G Q (2015) Bridging BIM and building: From a literature review to an integrated conceptual framework. International Journal of Project Management. 33, 6, 1405-1416 DOI: 10.1016/j.ijproman.2015.03.006. 21. Golparvar-Fard M, Peña-Mora F, Savarese S (2015) Automated Progress Monitoring Using Unordered Daily Construction Photographs and IFC-Based Building Information Models. Journal of Computing in Civil Engineering. 29, 1 DOI: 10.1061/(ASCE)CP.1943-5487.0000205. 22. Huang Y, Huang K, Wang L, Tao D, Tan T, Li X (2008) Enhanced biologically inspired model. IEEE Conference on Computer Vision and Pattern Recognition. DOI: 10.1109/CVPR.2008.4587599.
  • 23. Jalaei F, Canada C, Jrade A (2015) Integrating decision support system (DSS) and building information modeling (BIM) to optimize the selection of sustainable building components Journal of Information Technology in Construction, 20, 399-420 DOI: itcon.org/2015/25.
  • 24. In J, Kim J, Fischer M, Orr R (2015) Automation in Construction BIM-based decision-support method for master planning of sustainable large-scale developments. Automation in Construction, 58, 95-108 DOI: 10.1016/j.autcon.2015.07.003. 25. Liu R, Yang B, Zio E, Chen X (2018) Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33-47 DOI: 10.1016/j.ymssp.2018.02.016.
  • 26. Memon A H, Rahman I A, Memon I, Azman N I A (2014) BIM in Malaysian Construction Industry: Status, Advantages, Barriers and Strategies to Enhance the Implementation Level. Research Journal of Applied Sciences, Engineering and Technology, 606-614 DOI: airitilibrary.com/Publication/alDetailedMesh?docid=20407467-201408-201502170022-201502170022-606-614.
  • 27. Teizer J (2015) Status quo and open challenges in vision-based sensing and tracking of temporary resources on infrastructure construction sites. Advanced Engineering Informatics, 29, 2, 225-238 DOI: 10.1016/j.aei.2015.03.006.
  • 28. Tixier A J, Hallowell M R, Rajagopalan B, Bowman D (2016) Automation in Construction Application of machine learning to construction injury prediction. Automation in Construction, 69, 102-114 DOI: 10.1016/j.autcon.2016.05.016.
  • 29. Woo J, Menassa C (2014) Virtual Retrofit Model for aging commercial buildings in a smart grid environment. Energy and Buildings, 80, 424-435 DOI: 10.1016/j.enbuild.2014.05.004.
  • 30. Zhang J, El-gohary, N M (2017) Automation in Construction Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking. Automation in Construction, 73, 45-57 DOI: 10.1016/j.autcon.2016.08.027.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Author: Gozde Basak OZTURK (Primary Author)
Institution: ADNAN MENDERES ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ
Country: Turkey


Orcid: 0000-0002-6140-2703
Author: Mert TUNCA
Institution: Aydin Adnan Menderes University, Department of Civil Engineering
Country: Turkey


Dates

Acceptance Date : September 7, 2020
Publication Date : September 29, 2020

Bibtex @research article { cbayarfbe770565, journal = {Celal Bayar University Journal of Science}, issn = {1305-130X}, eissn = {1305-1385}, address = {}, publisher = {Celal Bayar University}, year = {2020}, volume = {16}, pages = {269 - 279}, doi = {10.18466/cbayarfbe.770565}, title = {Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis}, key = {cite}, author = {Ozturk, Gozde Basak and Tunca, Mert} }
APA Ozturk, G , Tunca, M . (2020). Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis . Celal Bayar University Journal of Science , 16 (3) , 269-279 . DOI: 10.18466/cbayarfbe.770565
MLA Ozturk, G , Tunca, M . "Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis" . Celal Bayar University Journal of Science 16 (2020 ): 269-279 <https://dergipark.org.tr/en/pub/cbayarfbe/issue/56964/770565>
Chicago Ozturk, G , Tunca, M . "Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis". Celal Bayar University Journal of Science 16 (2020 ): 269-279
RIS TY - JOUR T1 - Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis AU - Gozde Basak Ozturk , Mert Tunca Y1 - 2020 PY - 2020 N1 - doi: 10.18466/cbayarfbe.770565 DO - 10.18466/cbayarfbe.770565 T2 - Celal Bayar University Journal of Science JF - Journal JO - JOR SP - 269 EP - 279 VL - 16 IS - 3 SN - 1305-130X-1305-1385 M3 - doi: 10.18466/cbayarfbe.770565 UR - https://doi.org/10.18466/cbayarfbe.770565 Y2 - 2020 ER -
EndNote %0 Celal Bayar Üniversitesi Fen Bilimleri Dergisi Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis %A Gozde Basak Ozturk , Mert Tunca %T Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis %D 2020 %J Celal Bayar University Journal of Science %P 1305-130X-1305-1385 %V 16 %N 3 %R doi: 10.18466/cbayarfbe.770565 %U 10.18466/cbayarfbe.770565
ISNAD Ozturk, Gozde Basak , Tunca, Mert . "Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis". Celal Bayar University Journal of Science 16 / 3 (September 2020): 269-279 . https://doi.org/10.18466/cbayarfbe.770565
AMA Ozturk G , Tunca M . Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis. Celal Bayar Univ J Sci. 2020; 16(3): 269-279.
Vancouver Ozturk G , Tunca M . Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis. Celal Bayar University Journal of Science. 2020; 16(3): 269-279.