Research Article
BibTex RIS Cite

A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation

Year 2021, Volume: 17 Issue: 2, 167 - 173, 28.06.2021
https://doi.org/10.18466/cbayarfbe.844704

Abstract

A novel triphenylamine (TPA) based donor-π-acceptor (D-π-A) dye is synthesized and its optical and electrochemical properties are examined by UV-Vis absorption spectroscopy and cyclic voltammetry methods, respectively. The synthesized D-π-A dye plays a role as a visible light sensitizer to wide bandgap TiO2 photocatalyst. Hydrogen evolution reaction (HER) are carried out by using D-π-A dye sensitized TiO2 (Dye/TiO2) under visible light irradiation in the aqueous triethanolamine (TEOA) medium. Photoelectrochemical properties of Dye/TiO2 are investigated by using linear sweep voltammetry (LSV) and chronoamperometry (CA) techniques in the aqueous Na2SO4/TEOA solution and its transient photoelectrochemical response is reached 90 μA cm-2. In addition, phtocatalytic hydrogen evolution rates are found out as 0.52 mmol g-1 h-1 and 1.95 mmol g-1 h-1 by using of Dye/TiO2 and Dye/TiO2/Pt, respectively, which are obtained by in situ photoreduction of H2PtCl6 on the Dye/TiO2 photocatalyst. The mechanism of photochemical HER is explained by electrochemical band levels of the D-π-A dye and TiO2 photocatalyst.

Project Number

215M309

References

  • [1] Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
  • [2] Ma, Y., X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014. 114(19): p. 9987-10043.
  • [3] Huang, J.-F., Y. Lei, T. Luo, and J.-M. Liu, Photocatalytic H2 Production from Water by Metal-free Dye-sensitized TiO2 Semiconductors: The Role and Development Process of Organic Sensitizers. ChemSusChem, 2020. 13(22): p. 5863-5895.
  • [4] Wu, Y. and W. Zhu, Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews, 2013. 42(5): p. 2039-2058.
  • [5] Yu, Z., F. Li, and L. Sun, Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy & Environmental Science, 2015. 8(3): p. 760-775.
  • [6] Zhang, X., T. Peng, and S. Song, Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016. 4(7): p. 2365-2402.
  • [7] Hardin, B.E., H.J. Snaith, and M.D. McGehee, The renaissance of dye-sensitized solar cells. Nature Photonics, 2012. 6: p. 162.
  • [8] Lee, S.-H., Y. Park, K.-R. Wee, H.-J. Son, D.W. Cho, C. Pac, W. Choi, and S.O. Kang, Significance of Hydrophilic Characters of Organic Dyes in Visible-Light Hydrogen Generation Based on TiO2. Organic Letters, 2010. 12(3): p. 460-463.
  • [9] Jae-Hong, K. and A. Kwang-Soon, Tri-Branched Tri-Anchoring Organic Dye for Visible Light-Responsive Dye-Sensitized Photoelectrochemical Water-Splitting Cells. Japanese Journal of Applied Physics, 2010. 49(6R): p. 060219.
  • [10] Han, W.-S., K.-R. Wee, H.-Y. Kim, C. Pac, Y. Nabetani, D. Yamamoto, T. Shimada, H. Inoue, H. Choi, K. Cho, and S.O. Kang, Hydrophilicity Control of Visible-Light Hydrogen Evolution and Dynamics of the Charge-Separated State in Dye/TiO2/Pt Hybrid Systems. Chemistry – A European Journal, 2012. 18(48): p. 15368-15381.
  • [11] Choi, S.K., H.S. Yang, J.H. Kim, and H. Park, Organic dye-sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation. Applied Catalysis B: Environmental, 2012. 121–122: p. 206-213.
  • [12] Watanabe, M., H. Hagiwara, A. Iribe, Y. Ogata, K. Shiomi, A. Staykov, S. Ida, K. Tanaka, and T. Ishihara, Spacer effects in metal-free organic dyes for visible-light-driven dye-sensitized photocatalytic hydrogen production. Journal of Materials Chemistry A, 2014. 2(32): p. 12952-12961.
  • [13] Yu, F.T., S.C. Cui, X. Li, Y.Y. Peng, Y. Yu, K. Yun, S.C. Zhang, J. Li, J.G. Liu, and J.L. Hua, Effect of anchoring groups on N-annulated perylene-based sensitizers for dye-sensitized solar cells and photocatalytic H-2 evolution. Dyes and Pigments, 2017. 139: p. 7-18.
  • [14] Thelakkat, M., Star-Shaped, Dendrimeric and Polymeric Triarylamines as Photoconductors and Hole Transport Materials for Electro-Optical Applications. Macromolecular Materials and Engineering, 2002. 287(7): p. 442-461.
  • [15] Tiwari, A. and U. Pal, Effect of donor-donor-π-acceptor architecture of triphenylamine-based organic sensitizers over TiO2 photocatalysts for visible-light-driven hydrogen production. International Journal of Hydrogen Energy, 2015. 40(30): p. 9069-9079.
  • [16] Li, X., S. Cui, D. Wang, Y. Zhou, H. Zhou, Y. Hu, J.-g. Liu, Y. Long, W. Wu, J. Hua, and H. Tian, New Organic Donor–Acceptor–π–Acceptor Sensitizers for Efficient Dye-Sensitized Solar Cells and Photocatalytic Hydrogen Evolution under Visible-Light Irradiation. ChemSusChem, 2014. 7(10): p. 2879-2888.
  • [17] Dessi, A., M. Monai, M. Bessi, T. Montini, M. Calamante, A. Mordini, G. Reginato, C. Trono, P. Fornasiero, and L. Zani, Towards Sustainable H2 Production: Rational Design of Hydrophobic Triphenylamine-based Dyes for Sensitized Ethanol Photoreforming. ChemSusChem, 2018. 11(4): p. 793-805.
  • [18] Aslan, E., M.K. Gonce, M.Z. Yigit, A. Sarilmaz, E. Stathatos, F. Ozel, M. Can, and I.H. Patir, Photocatalytic H2 evolution with a Cu2WS4 catalyst on a metal free D-π-A organic dye-sensitized TiO2. Applied Catalysis B: Environmental, 2017. 210: p. 320-327.
  • [19] Patir, I.H., E. Aslan, G. Yanalak, M. Karaman, A. Sarilmaz, M. Can, M. Can, and F. Ozel, Donor-π-acceptor dye-sensitized photoelectrochemical and photocatalytic hydrogen evolution by using Cu2WS4 co-catalyst. International Journal of Hydrogen Energy, 2019. 44(3): p. 1441-1450.
  • [20] Aslan, E., M. Karaman, G. Yanalak, M. Can, F. Ozel, and I.H. Patir, The investigation of novel D-π-A type dyes (MK-3 and MK-4) for visible light driven photochemical hydrogen evolution. Dyes and Pigments, 2019. 171: p. 107710.
  • [21] Aslan, E., M. Karaman, G. Yanalak, H. Bilgili, M. Can, F. Ozel, and I.H. Patir, Synthesis of novel tetrazine based D-π-A organic dyes for photoelectrochemical and photocatalytic hydrogen evolution. Journal of Photochemistry and Photobiology A: Chemistry, 2020. 390: p. 112301.
  • [22] Swinehart, D.F., The Beer-Lambert Law. Journal of Chemical Education, 1962. 39(7): p. 333.
  • [23] Luo, G.-G., H. Lu, Y.-H. Wang, J. Dong, Y. Zhao, and R.-B. Wu, A D-π-A-π-A metal-free organic dye with improved efficiency for the application of solar energy conversion. Dyes and Pigments, 2016. 134: p. 498-505.
  • [24] Margalias, A., K. Seintis, M.Z. Yigit, M. Can, D. Sygkridou, V. Giannetas, M. Fakis, and E. Stathatos, The effect of additional electron donating group on the photophysics and photovoltaic performance of two new metal free D-π-A sensitizers. Dyes and Pigments, 2015. 121: p. 316-327.
Year 2021, Volume: 17 Issue: 2, 167 - 173, 28.06.2021
https://doi.org/10.18466/cbayarfbe.844704

Abstract

Supporting Institution

TÜBİTAK

Project Number

215M309

References

  • [1] Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
  • [2] Ma, Y., X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014. 114(19): p. 9987-10043.
  • [3] Huang, J.-F., Y. Lei, T. Luo, and J.-M. Liu, Photocatalytic H2 Production from Water by Metal-free Dye-sensitized TiO2 Semiconductors: The Role and Development Process of Organic Sensitizers. ChemSusChem, 2020. 13(22): p. 5863-5895.
  • [4] Wu, Y. and W. Zhu, Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews, 2013. 42(5): p. 2039-2058.
  • [5] Yu, Z., F. Li, and L. Sun, Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy & Environmental Science, 2015. 8(3): p. 760-775.
  • [6] Zhang, X., T. Peng, and S. Song, Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016. 4(7): p. 2365-2402.
  • [7] Hardin, B.E., H.J. Snaith, and M.D. McGehee, The renaissance of dye-sensitized solar cells. Nature Photonics, 2012. 6: p. 162.
  • [8] Lee, S.-H., Y. Park, K.-R. Wee, H.-J. Son, D.W. Cho, C. Pac, W. Choi, and S.O. Kang, Significance of Hydrophilic Characters of Organic Dyes in Visible-Light Hydrogen Generation Based on TiO2. Organic Letters, 2010. 12(3): p. 460-463.
  • [9] Jae-Hong, K. and A. Kwang-Soon, Tri-Branched Tri-Anchoring Organic Dye for Visible Light-Responsive Dye-Sensitized Photoelectrochemical Water-Splitting Cells. Japanese Journal of Applied Physics, 2010. 49(6R): p. 060219.
  • [10] Han, W.-S., K.-R. Wee, H.-Y. Kim, C. Pac, Y. Nabetani, D. Yamamoto, T. Shimada, H. Inoue, H. Choi, K. Cho, and S.O. Kang, Hydrophilicity Control of Visible-Light Hydrogen Evolution and Dynamics of the Charge-Separated State in Dye/TiO2/Pt Hybrid Systems. Chemistry – A European Journal, 2012. 18(48): p. 15368-15381.
  • [11] Choi, S.K., H.S. Yang, J.H. Kim, and H. Park, Organic dye-sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation. Applied Catalysis B: Environmental, 2012. 121–122: p. 206-213.
  • [12] Watanabe, M., H. Hagiwara, A. Iribe, Y. Ogata, K. Shiomi, A. Staykov, S. Ida, K. Tanaka, and T. Ishihara, Spacer effects in metal-free organic dyes for visible-light-driven dye-sensitized photocatalytic hydrogen production. Journal of Materials Chemistry A, 2014. 2(32): p. 12952-12961.
  • [13] Yu, F.T., S.C. Cui, X. Li, Y.Y. Peng, Y. Yu, K. Yun, S.C. Zhang, J. Li, J.G. Liu, and J.L. Hua, Effect of anchoring groups on N-annulated perylene-based sensitizers for dye-sensitized solar cells and photocatalytic H-2 evolution. Dyes and Pigments, 2017. 139: p. 7-18.
  • [14] Thelakkat, M., Star-Shaped, Dendrimeric and Polymeric Triarylamines as Photoconductors and Hole Transport Materials for Electro-Optical Applications. Macromolecular Materials and Engineering, 2002. 287(7): p. 442-461.
  • [15] Tiwari, A. and U. Pal, Effect of donor-donor-π-acceptor architecture of triphenylamine-based organic sensitizers over TiO2 photocatalysts for visible-light-driven hydrogen production. International Journal of Hydrogen Energy, 2015. 40(30): p. 9069-9079.
  • [16] Li, X., S. Cui, D. Wang, Y. Zhou, H. Zhou, Y. Hu, J.-g. Liu, Y. Long, W. Wu, J. Hua, and H. Tian, New Organic Donor–Acceptor–π–Acceptor Sensitizers for Efficient Dye-Sensitized Solar Cells and Photocatalytic Hydrogen Evolution under Visible-Light Irradiation. ChemSusChem, 2014. 7(10): p. 2879-2888.
  • [17] Dessi, A., M. Monai, M. Bessi, T. Montini, M. Calamante, A. Mordini, G. Reginato, C. Trono, P. Fornasiero, and L. Zani, Towards Sustainable H2 Production: Rational Design of Hydrophobic Triphenylamine-based Dyes for Sensitized Ethanol Photoreforming. ChemSusChem, 2018. 11(4): p. 793-805.
  • [18] Aslan, E., M.K. Gonce, M.Z. Yigit, A. Sarilmaz, E. Stathatos, F. Ozel, M. Can, and I.H. Patir, Photocatalytic H2 evolution with a Cu2WS4 catalyst on a metal free D-π-A organic dye-sensitized TiO2. Applied Catalysis B: Environmental, 2017. 210: p. 320-327.
  • [19] Patir, I.H., E. Aslan, G. Yanalak, M. Karaman, A. Sarilmaz, M. Can, M. Can, and F. Ozel, Donor-π-acceptor dye-sensitized photoelectrochemical and photocatalytic hydrogen evolution by using Cu2WS4 co-catalyst. International Journal of Hydrogen Energy, 2019. 44(3): p. 1441-1450.
  • [20] Aslan, E., M. Karaman, G. Yanalak, M. Can, F. Ozel, and I.H. Patir, The investigation of novel D-π-A type dyes (MK-3 and MK-4) for visible light driven photochemical hydrogen evolution. Dyes and Pigments, 2019. 171: p. 107710.
  • [21] Aslan, E., M. Karaman, G. Yanalak, H. Bilgili, M. Can, F. Ozel, and I.H. Patir, Synthesis of novel tetrazine based D-π-A organic dyes for photoelectrochemical and photocatalytic hydrogen evolution. Journal of Photochemistry and Photobiology A: Chemistry, 2020. 390: p. 112301.
  • [22] Swinehart, D.F., The Beer-Lambert Law. Journal of Chemical Education, 1962. 39(7): p. 333.
  • [23] Luo, G.-G., H. Lu, Y.-H. Wang, J. Dong, Y. Zhao, and R.-B. Wu, A D-π-A-π-A metal-free organic dye with improved efficiency for the application of solar energy conversion. Dyes and Pigments, 2016. 134: p. 498-505.
  • [24] Margalias, A., K. Seintis, M.Z. Yigit, M. Can, D. Sygkridou, V. Giannetas, M. Fakis, and E. Stathatos, The effect of additional electron donating group on the photophysics and photovoltaic performance of two new metal free D-π-A sensitizers. Dyes and Pigments, 2015. 121: p. 316-327.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emre Aslan 0000-0002-7672-2873

Project Number 215M309
Publication Date June 28, 2021
Published in Issue Year 2021 Volume: 17 Issue: 2

Cite

APA Aslan, E. (2021). A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(2), 167-173. https://doi.org/10.18466/cbayarfbe.844704
AMA Aslan E. A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation. CBUJOS. June 2021;17(2):167-173. doi:10.18466/cbayarfbe.844704
Chicago Aslan, Emre. “A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, no. 2 (June 2021): 167-73. https://doi.org/10.18466/cbayarfbe.844704.
EndNote Aslan E (June 1, 2021) A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 2 167–173.
IEEE E. Aslan, “A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation”, CBUJOS, vol. 17, no. 2, pp. 167–173, 2021, doi: 10.18466/cbayarfbe.844704.
ISNAD Aslan, Emre. “A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/2 (June 2021), 167-173. https://doi.org/10.18466/cbayarfbe.844704.
JAMA Aslan E. A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation. CBUJOS. 2021;17:167–173.
MLA Aslan, Emre. “A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 17, no. 2, 2021, pp. 167-73, doi:10.18466/cbayarfbe.844704.
Vancouver Aslan E. A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation. CBUJOS. 2021;17(2):167-73.