Research Article
BibTex RIS Cite

Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery

Year 2021, Volume: 17 Issue: 4, 337 - 345, 29.12.2021

Abstract

During reservoir engineering analysis, the assessment of the possibility of asphaltene precipitation and corresponding heavy oil recovery with economic losses is carried out before any thermal operation. Since, asphaltene precipitation reduces oil production, both by plugging the pipeline network and by decreasing the effective permeability in the reservoir. In this study, to analyze this phenomenon, three steam injection experiments; only-steam, steam-CO2, and steam-n-C4H10 at 1:1,29 volumetric ratios were carried out in limestone cores saturated with a 12,4 °API heavy crude oil. After each experiment produced oil asphaltene content was measured. Further, to determine the asphaltene effect on the fracture apertures and permeability, improved cubic law (ICL) equation was used to determine the equivalent fracture aperture change during the experiments. Equivalent fracture apertures were calculated analytically. An initial observation, made for only the steam injection experiment, was a decline in asphaltene levels present in the producing oil. Asphaltene levels gradually increased as the effects of steam progressed. When CO2 was added to steam the asphaltene content of the produced oil was increased. Nevertheless, the asphaltene content increased in produced oil was not changed the fracture permeability and equivalent fracture aperture considerably. In contrast, when n-C4H10 was injected with steam concurrently, the asphaltene levels gradually elevated above the starting value. However, in the further injection period, asphaltene content in the produced oil was lowered below the starting value as the injection progressed. This indicated that a partial upgrading of the asphaltene in the rock matrix by causing improvement in the equivalent fracture apertures.

References

  • 1. Butler, R. M., 1999. The Steam and Gas Push (SAGP). Journal of Canadian Petroleum and Technology; 38(3), 54-61.
  • 2. Kokal, S. L., Sayegh, S. G., 1995. Asphaltenes: The Cholesterol of Petroleum, SPE 29787. Presented at the Middle East Oil Show, Bahrain, Mar. 11-14.
  • 3. Firoozabadi, A., 1999. Thermodynamics of Hydrocarbon Reservoirs. New York: McGraw-Hill.
  • 4. Canbolat, S., Akin, S., Kovscek, A.R. 2006. Asphaltene Deposition During Steam-Assisted Gravity Drainage: Effect of Non-Condensable Gases, Petroleum Science and Technology; 24:1, 69-92.
  • 5. Escrochi, M., Nabipour, M., Ayatollahi, Sh., Mehranbod, N., 2008. Wettability Alteration at Elevated Temperatures: The Consequences of Asphaltene Precipitation, SPE-112428, SPE International Symposium and Exhibition on Formation Damage Control held in Lafayette, Louisiana, USA, 13–15 February.
  • 6. Oskui, G.P., Jurma, M.A., Abuhaimed, W.A., 2009. Laboratory Investigation of Asphaltene Precipitation Problems during CO2/Hydrocarbon Injection Project for EOR Application in Kuwaiti Reservoirs, SPE 126267, SPE Kuwait International Petroleum Conference and Exhibition held in Kuwait City, 14-16 December.
  • 7. Akmaz, S., Iscan, O., Gurkaynak, M. A., Yasar M., 2011. The Structural Characterization of Saturate, Aromatic, Resin, and Asphaltene Fractions of Batı Raman Crude Oil, Petroleum Science and Technology; 29:2, 160-171.
  • 8. Ghahfarokhi, A.K., Kor, P., Kharrat, R., Soulgani, B.S., 2017. Characterization of asphaltene deposition process in flow loop apparatus; An experimental investigation and modeling approach, Journal of Petroleum Science and Engineering; 151, 330–340 January 2017. 9. Prakoso, A. A., Punase, A. D., Hascakir, B., 2017. A Mechanistic Understanding of Asphaltenes Precipitation From Varying-Saturate-Concentration Perspectives, SPE Production & Operations; pp 86-98, February 2017.
  • 10. Kaito, Y., Kiriakehata, S. Nakagawa, K., Nakashima, H., Izumi, T. Yamada, T., 2020. Determination of Asphaltene Precipitation Amount under the Condition of the Solvent Assisted SAGD Process by the Application of PVT Apparatus SPE-199950-MS, e SPE Canada Heavy Oil Technical Conference originally scheduled to be held in Calgary, Alberta, Canada, 18 – 19 March.
  • 11. Fassihi, M.R. Turek, E. and Honarpour, M.M., Fyfe, R., 2020. Investigation of Permeability Impairment Due to Asphaltene Precipitation During Gas Injection EOR in a Major GoM Field, SPE-200429-MS, SPE Improved Oil Recovery Conference held in Tulsa, OK, USA, 18 – 22 April.
  • 12. Renshaw, C.E., Dadakis, J.S., Brown, S. R., 2000. Measuring Fracture Apertures: A Comparison of Methods. Geophysical Research. Letters, 27 (2), 289–292.
  • 13. Brush, D.J., Thomson, N.R., 2003. Fluid Flow in Synthetic Rough- Walled Fractures: Navier-Stokes, Stokes and Local Cubic Law Simulations. Water Resources Research. 39 (4), 1085.
  • 14. Portwood, J.T., 2005. The Kansas Arbuckle Formation: Performance Evaluation and Lessons Learned From More Than 200 Polymer-Gel Water-Shutoff Treatments, Paper SPE 94096, Presented at the SPE Production and Operations Symposium, Oklahoma City, 17-19 April 2005.
  • 15. Zimmerman, R.W., Al-Yaarubi, A., Pain, C.C., Grattoni, C.A., 2004. Non-linear Regimes of Fluid Flow in Rock Fractures. International Journal of Rock Mechanics and Mining Sciences; 41 (1), 163–169.
  • 16. Cardenas, M.B., Slottke, D.T., Ketcham, R.A., Sharp Jr., J.M., 2007. Navier-Stokes Flow and Transport Simulations Using Real Fractures Shows Heavy Tailing Due to Eddies. Geophysical Research. Letters; 34, L14404.
  • 17. Wang, L., Cardenas, M.B., 2014. Non-Fickian Transport Through Two-Dimensional Rough Fractures, Assessment and Prediction. Water Resources Research; 50, 871–884.
  • 18. Canbolat, S., Parlaktuna, M., 2019. Analytical and Visual Assessment of Fluid Flow in Fractured Medium. Journal of Petroleum Science and Engineering; 173, 77–94 February 2019.
  • 19. Srivastava, R.K., Huang, S.S., Dong M. 1999. Asphaltene Deposition During CO2 Flooding. SPE Production & Facilities; (November), 14 (4): 235-245.
  • 20. Nghiem, L. X.,. Kohse, B. F., Farouq Ali, S.M., Doan, Q., 2000. Asphaltene Precipitation: Phase Behavior Modelling and Compositional Simulation, SPE-59432-MS, SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama, Japan, 25-26 April.
  • 21. Xiao, N., Li, S., Lin, M., 2017. An Investigation of CO2-Water-Rock Interactions During CO2 Flooding, Electronic Journal of Geotechnical Engineering; 2017 (22.05), pp 1629-1642

Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery

Year 2021, Volume: 17 Issue: 4, 337 - 345, 29.12.2021

Abstract

Rezervuar mühendisliği analizi yaparken herhangi bir termal uygulama öncesinde asfalt çökelme olasılığı ve oluşabilecek ekonomik kayıpların tahlili yapılmalıdır. Asfalt çökelmesi hem üretim kuyusundaki boruları hem de boru hattı ağına bağlı boruları tıkayarak, ayrıca rezervuarın etkili geçirgenliğini düşürerek petrol üretimini azaltır. Bu çalışmada, karşılaşılan durumu analiz etmek için üç buhar enjeksiyon deneyi; sadece buhar, 1:1,29 hacimsel oranlarında buhar-CO2 ve buhar-n-C4H10 testleri, 12,4 °API ağır ham petrol ile doyurulmuş kireçtaşı karotlarda gerçekleştirilmiştir. Üretilen petrolün asfalt miktarı her deneyden sonra ölçülmüştür. Daha sonra, eşdeğer çatlak aralıkları ve geçirgenlikler üzerindeki asfalt etkisini gözlemlemek için; geliştirilmiş kübik yasası (ICL) denklemi kullanılmıştır. Her karot deneyi için eşdeğer çatlak aralıkları analitik olarak hesaplanmıştır. Sadece buhar enjeksiyon deneyi için yapılan ilk gözlem, üretilen petrolde bulunan asfalt seviyelerindeki düşüş olmuştur. Buharın etkileri ilerledikçe asfalt seviyeleri giderek artmıştır. Buhara CO2 ilave edildiğinde üretilen petroldeki asfalt içeriği, artmıştır. Bununla birlikte, sadece buhar deneyindekine karşılık gelen asfalt birikmesi ölçüsü, çatlak geçirgenliğini ve eşdeğer çatlak aralığını önemli ölçüde değiştirmemiştir. Buna karşılık, n-C4H10 aynı anda buharla enjekte edildiğinde, asfalt seviyeleri kademeli olarak başlangıç değerinin üzerine çıkmıştır. İlaveten, daha sonraki enjeksiyon döneminde, üretilen petroldeki asfalt içeriği, enjeksiyon ilerledikçe başlangıç değerinin altına düşmüştür. Bu da kaya matrisindeki asfaltın, eşdeğer çatlak aralıklarında genişlemeye neden olarak kısmen iyileştiğini göstermiştir.

References

  • 1. Butler, R. M., 1999. The Steam and Gas Push (SAGP). Journal of Canadian Petroleum and Technology; 38(3), 54-61.
  • 2. Kokal, S. L., Sayegh, S. G., 1995. Asphaltenes: The Cholesterol of Petroleum, SPE 29787. Presented at the Middle East Oil Show, Bahrain, Mar. 11-14.
  • 3. Firoozabadi, A., 1999. Thermodynamics of Hydrocarbon Reservoirs. New York: McGraw-Hill.
  • 4. Canbolat, S., Akin, S., Kovscek, A.R. 2006. Asphaltene Deposition During Steam-Assisted Gravity Drainage: Effect of Non-Condensable Gases, Petroleum Science and Technology; 24:1, 69-92.
  • 5. Escrochi, M., Nabipour, M., Ayatollahi, Sh., Mehranbod, N., 2008. Wettability Alteration at Elevated Temperatures: The Consequences of Asphaltene Precipitation, SPE-112428, SPE International Symposium and Exhibition on Formation Damage Control held in Lafayette, Louisiana, USA, 13–15 February.
  • 6. Oskui, G.P., Jurma, M.A., Abuhaimed, W.A., 2009. Laboratory Investigation of Asphaltene Precipitation Problems during CO2/Hydrocarbon Injection Project for EOR Application in Kuwaiti Reservoirs, SPE 126267, SPE Kuwait International Petroleum Conference and Exhibition held in Kuwait City, 14-16 December.
  • 7. Akmaz, S., Iscan, O., Gurkaynak, M. A., Yasar M., 2011. The Structural Characterization of Saturate, Aromatic, Resin, and Asphaltene Fractions of Batı Raman Crude Oil, Petroleum Science and Technology; 29:2, 160-171.
  • 8. Ghahfarokhi, A.K., Kor, P., Kharrat, R., Soulgani, B.S., 2017. Characterization of asphaltene deposition process in flow loop apparatus; An experimental investigation and modeling approach, Journal of Petroleum Science and Engineering; 151, 330–340 January 2017. 9. Prakoso, A. A., Punase, A. D., Hascakir, B., 2017. A Mechanistic Understanding of Asphaltenes Precipitation From Varying-Saturate-Concentration Perspectives, SPE Production & Operations; pp 86-98, February 2017.
  • 10. Kaito, Y., Kiriakehata, S. Nakagawa, K., Nakashima, H., Izumi, T. Yamada, T., 2020. Determination of Asphaltene Precipitation Amount under the Condition of the Solvent Assisted SAGD Process by the Application of PVT Apparatus SPE-199950-MS, e SPE Canada Heavy Oil Technical Conference originally scheduled to be held in Calgary, Alberta, Canada, 18 – 19 March.
  • 11. Fassihi, M.R. Turek, E. and Honarpour, M.M., Fyfe, R., 2020. Investigation of Permeability Impairment Due to Asphaltene Precipitation During Gas Injection EOR in a Major GoM Field, SPE-200429-MS, SPE Improved Oil Recovery Conference held in Tulsa, OK, USA, 18 – 22 April.
  • 12. Renshaw, C.E., Dadakis, J.S., Brown, S. R., 2000. Measuring Fracture Apertures: A Comparison of Methods. Geophysical Research. Letters, 27 (2), 289–292.
  • 13. Brush, D.J., Thomson, N.R., 2003. Fluid Flow in Synthetic Rough- Walled Fractures: Navier-Stokes, Stokes and Local Cubic Law Simulations. Water Resources Research. 39 (4), 1085.
  • 14. Portwood, J.T., 2005. The Kansas Arbuckle Formation: Performance Evaluation and Lessons Learned From More Than 200 Polymer-Gel Water-Shutoff Treatments, Paper SPE 94096, Presented at the SPE Production and Operations Symposium, Oklahoma City, 17-19 April 2005.
  • 15. Zimmerman, R.W., Al-Yaarubi, A., Pain, C.C., Grattoni, C.A., 2004. Non-linear Regimes of Fluid Flow in Rock Fractures. International Journal of Rock Mechanics and Mining Sciences; 41 (1), 163–169.
  • 16. Cardenas, M.B., Slottke, D.T., Ketcham, R.A., Sharp Jr., J.M., 2007. Navier-Stokes Flow and Transport Simulations Using Real Fractures Shows Heavy Tailing Due to Eddies. Geophysical Research. Letters; 34, L14404.
  • 17. Wang, L., Cardenas, M.B., 2014. Non-Fickian Transport Through Two-Dimensional Rough Fractures, Assessment and Prediction. Water Resources Research; 50, 871–884.
  • 18. Canbolat, S., Parlaktuna, M., 2019. Analytical and Visual Assessment of Fluid Flow in Fractured Medium. Journal of Petroleum Science and Engineering; 173, 77–94 February 2019.
  • 19. Srivastava, R.K., Huang, S.S., Dong M. 1999. Asphaltene Deposition During CO2 Flooding. SPE Production & Facilities; (November), 14 (4): 235-245.
  • 20. Nghiem, L. X.,. Kohse, B. F., Farouq Ali, S.M., Doan, Q., 2000. Asphaltene Precipitation: Phase Behavior Modelling and Compositional Simulation, SPE-59432-MS, SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama, Japan, 25-26 April.
  • 21. Xiao, N., Li, S., Lin, M., 2017. An Investigation of CO2-Water-Rock Interactions During CO2 Flooding, Electronic Journal of Geotechnical Engineering; 2017 (22.05), pp 1629-1642
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serhat Canbolat 0000-0002-7591-8276

Publication Date December 29, 2021
Published in Issue Year 2021 Volume: 17 Issue: 4

Cite

APA Canbolat, S. (2021). Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(4), 337-345.
AMA Canbolat S. Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery. CBUJOS. December 2021;17(4):337-345.
Chicago Canbolat, Serhat. “Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, no. 4 (December 2021): 337-45.
EndNote Canbolat S (December 1, 2021) Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 4 337–345.
IEEE S. Canbolat, “Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery”, CBUJOS, vol. 17, no. 4, pp. 337–345, 2021.
ISNAD Canbolat, Serhat. “Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/4 (December 2021), 337-345.
JAMA Canbolat S. Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery. CBUJOS. 2021;17:337–345.
MLA Canbolat, Serhat. “Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 17, no. 4, 2021, pp. 337-45.
Vancouver Canbolat S. Assessment of Asphaltene Production on Fracture Aperture During Heavy Oil Recovery. CBUJOS. 2021;17(4):337-45.