Research Article
BibTex RIS Cite

The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells

Year 2022, Volume: 18 Issue: 1, 85 - 89, 25.03.2022
https://doi.org/10.18466/cbayarfbe.992952

Abstract

In this study, Glass / ITO / PEDOT / Polymer / Al organic solar cell structures were obtained by using glass/indium doped tin oxide (Glass/ITO) transparent metal oxide substrates, PEDOT:PSS and P3HT:PCBM polymer photoactive layer and their performance depending on spin rate and coating technique were investigated. The polymer layer was coated using the spin coating method. Al metal was coated by physical vapor deposition method. By keeping the concentration of the photoactive layer constant, the effects of different spin coating rates, beside static and dynamic coating technique on the power conversion efficiency of the cells and their stability were compared. Electrical characterization of organic solar cells was performed under a solar simulator in a glove box system. By applying voltage between -0.5 V and +1.5 V, I-V (current-voltage) measurements of the solar cells were taken in the light and dark. The power conversion efficiencies of organic solar cells coated at 800rpm, 1000rpm and 2000rpm spin coating speeds, respectively, were observed to be 2.34%, 2.08% and 1.98%. When the average efficiency values considered, static coating at 800 rpm gives more reproducible results in comparison with the other average efficiency values. The average efficiency values for static coating at 800 rpm is observed to be %2.

References

  • [1]. Spanggaard H, Krebs FC. (2004). A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells. 83(2–3): 125–146. DOI: 10.1016/j.solmat.2004.02.021.
  • [2]. Sims L, Egelhaaf HJ, Hauch JA, Kogler FR, Steim R. (2012). Plastic solar cells. Comprehensive Renewable Energy. 1(1): 439–480. DOI: 10.1016/B978-0-08-087872-0.00120-7.
  • [3]. Gledhill SE, Scott B, Gregg BA. (2005). Organic and nano-structured composite photovoltaics: An overview. Journal of Materials Research. 20(12): 3167–3179. DOI: 10.1557/jmr.2005.0407,
  • [4]. Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB. (1996). Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Applied Physics Letters, 68(22): 3120–3122. DOI: 10.1063/1.115797.
  • [5]. Zhao Y, Duan LP, Liu JT, Xu Q, Ni ZH. (2013). Optimisation of thermal annealing parameters for different thickness of active layers based on polymer/fullerene bulk heterojunction solar cells. Materials Research Innovations. 17(SUPPL. 1). DOI: 10.1179/1432891713Z.000000000207.
  • [6]. Hoppe H, Sariciftci NS. (2008). Polymer solar cells. Advances in Polymer Science. 214(1): 1–86. DOI: 10.1007/12_2007_121.
  • [7]. Wang W, Guo S, Herzig EM, Sarkar K, Schindler M, Magerl D, (2016). Investigation of morphological degradation of P3HT:PCBM bulk heterojunction films exposed to long-term host solvent vapor. Journal of Materials Chemistry A. 4(10): 3743–3753. DOI: 10.1039/C5TA09873D.
  • [8]. Kadem BY, Al-Hashimi MK, Hassan AK. (2014). The effect of solution processing on the power conversion efficiency of P3HT-based organic solar cells. Energy Procedia. 50: 237–245. DOI: 10.1016/j.egypro.2014.06.029.
  • [9]. Iakobson OD, Gribkova OL, Tameev AR, Nunzi JM. A common optical approach to thickness optimization in polymer and perovskite solar cells. Scientific Reports 2021; 11(1): 1–6. DOI: 10.1038/s41598-021-84452-x.
  • [10]. Farrokhifar M, Rostami A, Sadoogi N. Opto-electrical simulation of organic solar cells. Proceedings - UKSim-AMSS 8th European Modelling Symposium on Computer Modelling and Simulation, EMS 2014 2014: 507–512. DOI: 10.1109/EMS.2014.73.
  • [11]. Liu L, Li G. Thickness optimization of organic solar cells by optical transfer matrix. Proceedings of the IEEE Conference on Nanotechnology 2011: 332–336. DOI: 10.1109/NANO.2011.6144456.
  • [12]. Malti I, Chiali A, Sari NC. Numerical study of electrical behavior of P3HT/PCBM bulk heterojunction solar cell. Applied Solar Energy (English Translation of Geliotekhnika) 2016; 52(2): 122–127. DOI: 10.3103/S0003701X16020195.
  • [13]. Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, (1993). Semiconducting polymer-buckminsterfullerene heterojunctions. Diodes, photodiodes, and photovoltaic cells. Applied Physics Letters; 62(6): 585–587. DOI: 10.1063/1.108863.
Year 2022, Volume: 18 Issue: 1, 85 - 89, 25.03.2022
https://doi.org/10.18466/cbayarfbe.992952

Abstract

References

  • [1]. Spanggaard H, Krebs FC. (2004). A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells. 83(2–3): 125–146. DOI: 10.1016/j.solmat.2004.02.021.
  • [2]. Sims L, Egelhaaf HJ, Hauch JA, Kogler FR, Steim R. (2012). Plastic solar cells. Comprehensive Renewable Energy. 1(1): 439–480. DOI: 10.1016/B978-0-08-087872-0.00120-7.
  • [3]. Gledhill SE, Scott B, Gregg BA. (2005). Organic and nano-structured composite photovoltaics: An overview. Journal of Materials Research. 20(12): 3167–3179. DOI: 10.1557/jmr.2005.0407,
  • [4]. Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB. (1996). Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Applied Physics Letters, 68(22): 3120–3122. DOI: 10.1063/1.115797.
  • [5]. Zhao Y, Duan LP, Liu JT, Xu Q, Ni ZH. (2013). Optimisation of thermal annealing parameters for different thickness of active layers based on polymer/fullerene bulk heterojunction solar cells. Materials Research Innovations. 17(SUPPL. 1). DOI: 10.1179/1432891713Z.000000000207.
  • [6]. Hoppe H, Sariciftci NS. (2008). Polymer solar cells. Advances in Polymer Science. 214(1): 1–86. DOI: 10.1007/12_2007_121.
  • [7]. Wang W, Guo S, Herzig EM, Sarkar K, Schindler M, Magerl D, (2016). Investigation of morphological degradation of P3HT:PCBM bulk heterojunction films exposed to long-term host solvent vapor. Journal of Materials Chemistry A. 4(10): 3743–3753. DOI: 10.1039/C5TA09873D.
  • [8]. Kadem BY, Al-Hashimi MK, Hassan AK. (2014). The effect of solution processing on the power conversion efficiency of P3HT-based organic solar cells. Energy Procedia. 50: 237–245. DOI: 10.1016/j.egypro.2014.06.029.
  • [9]. Iakobson OD, Gribkova OL, Tameev AR, Nunzi JM. A common optical approach to thickness optimization in polymer and perovskite solar cells. Scientific Reports 2021; 11(1): 1–6. DOI: 10.1038/s41598-021-84452-x.
  • [10]. Farrokhifar M, Rostami A, Sadoogi N. Opto-electrical simulation of organic solar cells. Proceedings - UKSim-AMSS 8th European Modelling Symposium on Computer Modelling and Simulation, EMS 2014 2014: 507–512. DOI: 10.1109/EMS.2014.73.
  • [11]. Liu L, Li G. Thickness optimization of organic solar cells by optical transfer matrix. Proceedings of the IEEE Conference on Nanotechnology 2011: 332–336. DOI: 10.1109/NANO.2011.6144456.
  • [12]. Malti I, Chiali A, Sari NC. Numerical study of electrical behavior of P3HT/PCBM bulk heterojunction solar cell. Applied Solar Energy (English Translation of Geliotekhnika) 2016; 52(2): 122–127. DOI: 10.3103/S0003701X16020195.
  • [13]. Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, (1993). Semiconducting polymer-buckminsterfullerene heterojunctions. Diodes, photodiodes, and photovoltaic cells. Applied Physics Letters; 62(6): 585–587. DOI: 10.1063/1.108863.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Esma Yenel 0000-0003-1348-6399

Publication Date March 25, 2022
Published in Issue Year 2022 Volume: 18 Issue: 1

Cite

APA Yenel, E. (2022). The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells. Celal Bayar University Journal of Science, 18(1), 85-89. https://doi.org/10.18466/cbayarfbe.992952
AMA Yenel E. The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells. CBUJOS. March 2022;18(1):85-89. doi:10.18466/cbayarfbe.992952
Chicago Yenel, Esma. “The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells”. Celal Bayar University Journal of Science 18, no. 1 (March 2022): 85-89. https://doi.org/10.18466/cbayarfbe.992952.
EndNote Yenel E (March 1, 2022) The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells. Celal Bayar University Journal of Science 18 1 85–89.
IEEE E. Yenel, “The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells”, CBUJOS, vol. 18, no. 1, pp. 85–89, 2022, doi: 10.18466/cbayarfbe.992952.
ISNAD Yenel, Esma. “The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells”. Celal Bayar University Journal of Science 18/1 (March 2022), 85-89. https://doi.org/10.18466/cbayarfbe.992952.
JAMA Yenel E. The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells. CBUJOS. 2022;18:85–89.
MLA Yenel, Esma. “The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells”. Celal Bayar University Journal of Science, vol. 18, no. 1, 2022, pp. 85-89, doi:10.18466/cbayarfbe.992952.
Vancouver Yenel E. The Effect of Coating Parameter of Active Layer on Performance of Polymer Solar Cells. CBUJOS. 2022;18(1):85-9.