Research Article
BibTex RIS Cite

Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells

Year 2022, Volume: 18 Issue: 3, 249 - 256, 29.09.2022
https://doi.org/10.18466/cbayarfbe.1033596

Abstract

In the present study, the effects of chain length variation of Poly(3-hexyl) thiophene polymer, which is one of the appropriate alternatives of Spiro-O-MeTAD used as a hole transfer layer (HTL) in perovskite-based solar cells (PSC), on thin-film morphology and device performance were investigated. Furthermore, nanowires of long (UZ) and short-chain (KZ) P3HT were obtained in the solution phase and then comparative photovoltaic performance analyses were carried out by fabricating PSC devices. As a result, it was determined that the morphological changes resulting from the polymer chain length directly affect the charge transfer between the active layer and HTL. KZ-P3HT presented better performance than both standard P3HT (5.99) and UZ-P3HT (2.68) polymers with a power conversion efficiency (PCE) of 7.74%. It was demonstrated that the main reason for this is that the fringed structure, detected by AFM images, increases the contact ratio at the perovskite/HTM interface. In addition, thanks to the morphological improvements in nano-wire studies, it was observed that the photovoltaic performance of the PSC device containing UZ-P3HT increased by 5.51%. Contrary to UZ-P3HT, it was determined that after the conversion of KZ-P3HT to the nanowire, the fringed structure on the surface disappeared and therefore the efficiency decreased to 5.81%.

Project Number

2016K12-2841

References

  • “Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL.” https://www.nrel.gov/pv/cell-efficiency.html (accessed Dec.. 3, 2021).
  • M. Saliba et al., 2016, “Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency,” Energy and Environmental Science, 9(6), 1989–1997.
  • M. Liu, M. B. Johnston, and H. J. Snaith, 2013, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, 501(7467): 395–398.
  • O. Almora et al., 2021, “Device Performance of Emerging Photovoltaic Materials (Version 1),” Advanced Energy Materials, 11(11).
  • S. S. Ashrafi et al., 2020, “Characterization and Fabrication of Pb-Based Perovskites Solar Cells under Atmospheric Condition and Stability Enhancement,” Advances in Materials Physics and Chemistry, 10(11): 282–296.
  • Q. Chen et al., 2014, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,”, Journal of the American Chemical Society, 136(2): 3–6.
  • G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, 2014, “Morphological Control for High Performance , Solution- Processed Planar Heterojunction Perovskite Solar Cells,”, Advanced Functional Materials, 24 (1): 151–157.
  • S. Rutile et al., 2013, “High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO 2 Nanorod and CH 3 NH 3 PbI 3 Perovskite Sensitizer”, Nano Letters, 13(6): 2412-2417.
  • K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, 2014, “Environmental Science Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency”, Energy and Environmental Science, 7(3), 1142–1147.
  • Q. An, P. Fassl, Y. J. Hofstetter, D. Becker-koch, and A. Bausch, 2017, “Nano Energy High performance planar perovskite solar cells by ZnO electron transport layer engineering”, Nano Energy, 39(4): 400–408.
  • T. Matsui, W. Tress, M. Saliba, A. Abate, M. Gra, and A. Hagfeldt, 2016, “Environmental Science cells by solution-processed tin oxide”, Energy & Environmental Science, 9: 3128–3134.
  • Y. Wu et al., 2016, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering”, Nature Energy, 1(11):1–7.
  • P. Yadav, D. Prochowicz, M. Saliba, P. P. Boix, S. M. Zakeeruddin, and M. Grätzel, 2017, “Interfacial kinetics of efficient perovskite solar cells,” Crystals, 7(8):1–9.
  • L. Miao, Z. Song, D. Zhu, L. Li, L. Gan, and M. Liu, 2020, “Recent advances in carbon-based supercapacitors,” Materials Advances, 1(5):945–966.
  • T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring, and M. D. McGehee, 2017, “Towards enabling stable lead halide perovskite solar cells,” J. Mater. Chem. A, 5(23), 11483–11500.
  • M. Kim et al., 2021, “Moisture resistance in perovskite solar cells attributed to a water-splitting layer,” Communications Materials 2021 2:1, 2(1), 1–12.
  • G. Ren et al., 2021, “Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review,” Journal of Materials Chemistry A, 9(8): 4589–4625.
  • J. Y. Seo et al., 2021, “Dopant Engineering for Spiro-OMeTAD Hole-Transporting Materials towards Efficient Perovskite Solar Cells,” Advanced Functional Materials, 31(45): 2102124.
  • X. Sun, X. Yu, and Z. Li, 2020, “Recent advances of dopant-free polymer hole-transporting materials for perovskite solar cells,” ACS Applied Energy Materials, 3(11): 10282–10302.
  • N. Yaghoobi Nia et al., 2021, “Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells,” ACS Sustainable Chemistry and Engineering, 9(14): 5061–5073.
  • Y. Zhang, M. Elawad, Z. Yu, X. Jiang, J. Lai, and L. Sun, 2016, “Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping,” RSC Advances, 6(110): 108888–108895.
  • E. H. Jung et al., 2019, “Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene),” Nature 2019 567:7749, 567(7749): 511–515.
  • N. Y. Nia, F. Matteocci, L. Cina, and A. Di Carlo, 2017, “High-Efficiency Perovskite Solar Cell Based on Poly(3-Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer,” ChemSusChem, 10(19): 3854–3860.
  • D. Kiymaz, A. Kiymaz, and C. Zafer, 2020, “Performance improvement of P3HT nanowire-based organic solar cells by interfacial morphology engineering,” Nanotechnology: 32(10), 105401.
  • N. Y. Nia, F. Matteocci, L. Cina, and A. Di, 2017, “High-Efficiency Perovskite Solar Cell Based on Poly ( 3-Hexylthiophene ): Influence of Molecular Weight and Mesoscopic Scaffold Layer,” Aldo Di Carlo, 10 (19) : 3854–3860.
  • M. Sapolsky and D. Boucher, 2018, “Poly ( 3-Hexylthiophene ) Aggregation at Solvent – Solvent Interfaces,” Journal of Polymer Science, Part B: Polymer Physics, 56 (13): 999–1011.
  • Y. Wang et al., 2017, “Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells,” Nano Energy, 39(July): 616–625.
  • J. W. Lee, S. H. Bae, N. De Marco, Y. T. Hsieh, Z. Dai, and Y. Yang, 2018, “The role of grain boundaries in perovskite solar cells,” Materials Today Energy, 7: 149–160.
  • L. Tian et al., 2020, “Effects of Annealing Time on Triple Cation Perovskite Films and Their Solar Cells,” ACS Applied Materials and Interfaces, 12(26): 29344–29356.
Year 2022, Volume: 18 Issue: 3, 249 - 256, 29.09.2022
https://doi.org/10.18466/cbayarfbe.1033596

Abstract

Supporting Institution

Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı

Project Number

2016K12-2841

References

  • “Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL.” https://www.nrel.gov/pv/cell-efficiency.html (accessed Dec.. 3, 2021).
  • M. Saliba et al., 2016, “Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency,” Energy and Environmental Science, 9(6), 1989–1997.
  • M. Liu, M. B. Johnston, and H. J. Snaith, 2013, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, 501(7467): 395–398.
  • O. Almora et al., 2021, “Device Performance of Emerging Photovoltaic Materials (Version 1),” Advanced Energy Materials, 11(11).
  • S. S. Ashrafi et al., 2020, “Characterization and Fabrication of Pb-Based Perovskites Solar Cells under Atmospheric Condition and Stability Enhancement,” Advances in Materials Physics and Chemistry, 10(11): 282–296.
  • Q. Chen et al., 2014, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,”, Journal of the American Chemical Society, 136(2): 3–6.
  • G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, 2014, “Morphological Control for High Performance , Solution- Processed Planar Heterojunction Perovskite Solar Cells,”, Advanced Functional Materials, 24 (1): 151–157.
  • S. Rutile et al., 2013, “High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO 2 Nanorod and CH 3 NH 3 PbI 3 Perovskite Sensitizer”, Nano Letters, 13(6): 2412-2417.
  • K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, 2014, “Environmental Science Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency”, Energy and Environmental Science, 7(3), 1142–1147.
  • Q. An, P. Fassl, Y. J. Hofstetter, D. Becker-koch, and A. Bausch, 2017, “Nano Energy High performance planar perovskite solar cells by ZnO electron transport layer engineering”, Nano Energy, 39(4): 400–408.
  • T. Matsui, W. Tress, M. Saliba, A. Abate, M. Gra, and A. Hagfeldt, 2016, “Environmental Science cells by solution-processed tin oxide”, Energy & Environmental Science, 9: 3128–3134.
  • Y. Wu et al., 2016, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering”, Nature Energy, 1(11):1–7.
  • P. Yadav, D. Prochowicz, M. Saliba, P. P. Boix, S. M. Zakeeruddin, and M. Grätzel, 2017, “Interfacial kinetics of efficient perovskite solar cells,” Crystals, 7(8):1–9.
  • L. Miao, Z. Song, D. Zhu, L. Li, L. Gan, and M. Liu, 2020, “Recent advances in carbon-based supercapacitors,” Materials Advances, 1(5):945–966.
  • T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring, and M. D. McGehee, 2017, “Towards enabling stable lead halide perovskite solar cells,” J. Mater. Chem. A, 5(23), 11483–11500.
  • M. Kim et al., 2021, “Moisture resistance in perovskite solar cells attributed to a water-splitting layer,” Communications Materials 2021 2:1, 2(1), 1–12.
  • G. Ren et al., 2021, “Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review,” Journal of Materials Chemistry A, 9(8): 4589–4625.
  • J. Y. Seo et al., 2021, “Dopant Engineering for Spiro-OMeTAD Hole-Transporting Materials towards Efficient Perovskite Solar Cells,” Advanced Functional Materials, 31(45): 2102124.
  • X. Sun, X. Yu, and Z. Li, 2020, “Recent advances of dopant-free polymer hole-transporting materials for perovskite solar cells,” ACS Applied Energy Materials, 3(11): 10282–10302.
  • N. Yaghoobi Nia et al., 2021, “Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells,” ACS Sustainable Chemistry and Engineering, 9(14): 5061–5073.
  • Y. Zhang, M. Elawad, Z. Yu, X. Jiang, J. Lai, and L. Sun, 2016, “Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping,” RSC Advances, 6(110): 108888–108895.
  • E. H. Jung et al., 2019, “Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene),” Nature 2019 567:7749, 567(7749): 511–515.
  • N. Y. Nia, F. Matteocci, L. Cina, and A. Di Carlo, 2017, “High-Efficiency Perovskite Solar Cell Based on Poly(3-Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer,” ChemSusChem, 10(19): 3854–3860.
  • D. Kiymaz, A. Kiymaz, and C. Zafer, 2020, “Performance improvement of P3HT nanowire-based organic solar cells by interfacial morphology engineering,” Nanotechnology: 32(10), 105401.
  • N. Y. Nia, F. Matteocci, L. Cina, and A. Di, 2017, “High-Efficiency Perovskite Solar Cell Based on Poly ( 3-Hexylthiophene ): Influence of Molecular Weight and Mesoscopic Scaffold Layer,” Aldo Di Carlo, 10 (19) : 3854–3860.
  • M. Sapolsky and D. Boucher, 2018, “Poly ( 3-Hexylthiophene ) Aggregation at Solvent – Solvent Interfaces,” Journal of Polymer Science, Part B: Polymer Physics, 56 (13): 999–1011.
  • Y. Wang et al., 2017, “Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells,” Nano Energy, 39(July): 616–625.
  • J. W. Lee, S. H. Bae, N. De Marco, Y. T. Hsieh, Z. Dai, and Y. Yang, 2018, “The role of grain boundaries in perovskite solar cells,” Materials Today Energy, 7: 149–160.
  • L. Tian et al., 2020, “Effects of Annealing Time on Triple Cation Perovskite Films and Their Solar Cells,” ACS Applied Materials and Interfaces, 12(26): 29344–29356.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Oguz Cicek 0000-0001-5812-7192

Burak Gültekin 0000-0002-8804-7844

Project Number 2016K12-2841
Publication Date September 29, 2022
Published in Issue Year 2022 Volume: 18 Issue: 3

Cite

APA Cicek, O., & Gültekin, B. (2022). Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18(3), 249-256. https://doi.org/10.18466/cbayarfbe.1033596
AMA Cicek O, Gültekin B. Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells. CBUJOS. September 2022;18(3):249-256. doi:10.18466/cbayarfbe.1033596
Chicago Cicek, Oguz, and Burak Gültekin. “Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18, no. 3 (September 2022): 249-56. https://doi.org/10.18466/cbayarfbe.1033596.
EndNote Cicek O, Gültekin B (September 1, 2022) Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18 3 249–256.
IEEE O. Cicek and B. Gültekin, “Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells”, CBUJOS, vol. 18, no. 3, pp. 249–256, 2022, doi: 10.18466/cbayarfbe.1033596.
ISNAD Cicek, Oguz - Gültekin, Burak. “Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18/3 (September 2022), 249-256. https://doi.org/10.18466/cbayarfbe.1033596.
JAMA Cicek O, Gültekin B. Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells. CBUJOS. 2022;18:249–256.
MLA Cicek, Oguz and Burak Gültekin. “Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 18, no. 3, 2022, pp. 249-56, doi:10.18466/cbayarfbe.1033596.
Vancouver Cicek O, Gültekin B. Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells. CBUJOS. 2022;18(3):249-56.