Research Article
BibTex RIS Cite

The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015

Year 2022, Volume: 18 Issue: 4, 403 - 408, 26.12.2022
https://doi.org/10.18466/cbayarfbe.1019000

Abstract

Bu çalışma, 20 Mart 2015 tarihindeki güneş tutulması sırasında toplam elektron içeriğinin (TEİ) değişimini araştırmayı amaçlamaktadır. Bu amaçla, beş farklı GPS alıcısından elde edilen TEİ değerleri [(MORP (55.21 N, 1.68 W), ONSA (57.39 N) , 11.92 D), MAR6 (60.59 K, 17.26 D), METS(60.22 K, 24.40 D), TRO1(69.66 K, 18.94 D)] yüzde sapma hesabı kullanılarak güneş tutulması sırasında iyonosferik değişimi belirlemek için incelendi. Güneş tutulmasının etkisini net bir şekilde görebilmek için, referans gün olarak jeomanyetik olarak sakin (30 Mart) ve tedirgin (19 Mart) günlerdeki TEİ değişiklikleri de incelenmiştir. Yüzde sapma hesaplarına bakıldığında tüm istasyonlarda TEC değerlerinde gün batımına benzer bir davranış gözlemlenmekte olup MORP, METS, MAR6, ONSA ve TRO1 istasyonlarında güneş tutulmasına bağlı olarak sırasıyla %16,45 %6,53, %7,99, %8,12 ve %7,22oranında azalma olduğu sonucuna varılmıştır. Her iki referans gününde de TEC değerlerinde bir artış vardır. Ancak tedirgin gündeki artış yüzdesi sakin güne göre daha fazladır. Tutulma büyüklüğü %80'den büyük olan bu beş istasyonda iyonosferik TEİ'deki azalmaların tutulmadan kaynaklandığı ifade edilebilir.

References

  • [1]. Chernogor, L.F., I.F. Domnin, L.Y. Emelyanov, ve M.V. Lyashenko, 2019. Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). Journal of Atmospheric and Solar-Terrestrial Physics. 182:1-9.
  • [2]. Eccles, W.H., 1912. Effect of the eclipse on wireless telegraphic signals. . Electrician 69:109–116.
  • [3]. Rishbeth, H., 1968. Solar eclipses and ionospheric theory. Space Science Reviews. 8(4):543-554.
  • [4]. Curto, J., B. Heilig, ve M. Pinol, 2006. Modeling the geomagnetic effects caused by the solar eclipse of 11 August 1999. Journal of Geophysical Research: Space Physics. 111(A7).
  • [5]. Zhang, X., Z. Zhao, Y. Zhang, ve C. Zhou, 2010. Observations of the ionosphere in the equatorial anomaly region using WISS during the total solar eclipse of 22 July 2009. Journal of Atmospheric Solar-Terrestrial Physics. 72(11-12):869-875.
  • [6]. Chukwuma, V.ve B. Adekoya, 2016. The effects of March 20 2015 solar eclipse on the F2 layer in the mid-latitude. Advances in Space Research. 58(9):1720-1731.
  • [7]. Pietrella, M., M. Pezzopane, ve A. Settimi, 2016. Ionospheric response under the influence of the solar eclipse occurred on 20 March 2015: Importance of autoscaled data and their assimilation for obtaining a reliable modeling of the ionosphere. Journal of Atmospheric Solar-Terrestrial Physics. 146:49-57.
  • [8]. Atıcı, R., S. Sağır, L.Y. Emelyanov, ve M. Lyashenko, 2021. Investigation of Ionospheric Electron Density Change During Two Partial Solar Eclipses and Its Comparison with Predictions of NeQuick 2 and IRI-2016 Models. Wireless Personal Communications:1-13.
  • [9]. Yaşar, M., 2021. The solar eclipse effect on diffusion processes of O++ O2→ O2++ O reaction for the upper ionosphere over Kharkov. Thermal Science,(00):7-7.
  • [10]. Yaşar, M., 2021. The change of diffusion processes for O++ N2→ NO++ N reaction in the ionospheric f region during the solar eclipse over Kharkov. Thermal Science,(00):6-6.
  • [11]. Adekoya, B.ve V. Chukwuma, 2016. Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude. Journal of Atmospheric and Solar-Terrestrial Physics. 138:136-160.
  • [12]. Shagimuratov, I.I., G.A. Yakimova, N.Y. Tepenitsyna, I.I. Efishov, ve L.M. Koltunenko, 2018. Effects of the Solar Eclipse of March 20, 2015 on the Total Electron Content over Europe. Russian Journal of Physical Chemistry B. 12(3):568-575.
  • [13]. Maurya, A.K., M.N. Shrivastava, ve K.N. Kumar, 2020. Ionospheric monitoring with the Chilean GPS eyeball during the South American total solar eclipse on 2nd July 2019. Scientific reports. 10(1):1-10.
  • [14]. Davis, C.J., M. Lockwood, S. Bell, J. Smith, ve E. Clarke, 2000. Ionospheric measurements of relative coronal brightness during the total solar eclipses of 11 August, 1999 and 9 July, 1945. in Annales Geophysicae. Springer.
  • [15]. Davis, C.J., E. Clarke, R. Bamford, M. Lockwood, ve S. Bell, 2001. Long term changes in EUV and X-ray emissions from the solar corona and chromosphere as measured by the response of the Earth's ionosphere during total solar eclipses from 1932 to 1999. in Annales Geophysicae.
  • [16]. Klobuchar, J.A., 1987. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on Aerospace Electronic Systems,(3):325-331.
  • [17]. Arikan, F., C. Erol, ve O. Arikan, 2004. Regularized estimation of vertical total electron content from GPS data for a desired time period. Radio Science. 39(6).
  • [18]. Atıcı, R., 2018. Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul, Turkey. Astrophysics and Space Science 363(11):231.
  • [19]. Arikan, F., C. Erol, ve O. Arikan, 2003. Regularized estimation of vertical total electron content from Global Positioning System data. Journal of Geophysical Research: Space Physics. 108(A12).
  • [20]. Nayir, H., F. Arikan, O. Arikan, ve C. Erol, 2007. Total electron content estimation with Reg‐Est. Journal of Geophysical Research: Space Physics. 112(A11).
  • [21]. Borchevkina, O., I. Karpov, ve A. Karpov, 2017. Observations of Acoustic Gravity Waves during the Solar Eclipse of March 20, 2015 in Kaliningrad. Russian Journal of Physical Chemistry B. 11(6):1024-1027.
  • [22]. Shagimuratov, I., G. Yakimova, N.Y. Tepenitsyna, I. Efishov, ve L. Koltunenko, 2018. Effects of the Solar Eclipse of March 20, 2015 on the Total Electron Content over Europe. Russian Journal of Physical Chemistry B. 12(3):568-575.
  • [23]. Galakhov, A.ve O. Akhmetov, 2017. Transverse resonance in the high-latitude section of the Earth–ionosphere waveguide during the solar eclipse of March 20, 2015. Geomagnetism and Aeronomy. 57(5):618-623.
  • [24]. Alizadeh, M.M., H. Schuh, S. Zare, S. Sobhkhiz-Miandehi, ve L.-C. Tsai, 2020. Remote sensing ionospheric variations due to total solar eclipse, using GNSS observations. Geodesy and Geodynamics. 11(3):202-210.
  • [25]. Hoque, M.M., D. Wenzel, N. Jakowski, T. Gerzen, J. Berdermann, V. Wilken, M. Kriegel, H. Sato, C. Borries, ve D. Minkwitz, 2016. Ionospheric response over Europe during the solar eclipse of March 20, 2015. Journal of Space Weather and Space Climate. 6:A36.
Year 2022, Volume: 18 Issue: 4, 403 - 408, 26.12.2022
https://doi.org/10.18466/cbayarfbe.1019000

Abstract

References

  • [1]. Chernogor, L.F., I.F. Domnin, L.Y. Emelyanov, ve M.V. Lyashenko, 2019. Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). Journal of Atmospheric and Solar-Terrestrial Physics. 182:1-9.
  • [2]. Eccles, W.H., 1912. Effect of the eclipse on wireless telegraphic signals. . Electrician 69:109–116.
  • [3]. Rishbeth, H., 1968. Solar eclipses and ionospheric theory. Space Science Reviews. 8(4):543-554.
  • [4]. Curto, J., B. Heilig, ve M. Pinol, 2006. Modeling the geomagnetic effects caused by the solar eclipse of 11 August 1999. Journal of Geophysical Research: Space Physics. 111(A7).
  • [5]. Zhang, X., Z. Zhao, Y. Zhang, ve C. Zhou, 2010. Observations of the ionosphere in the equatorial anomaly region using WISS during the total solar eclipse of 22 July 2009. Journal of Atmospheric Solar-Terrestrial Physics. 72(11-12):869-875.
  • [6]. Chukwuma, V.ve B. Adekoya, 2016. The effects of March 20 2015 solar eclipse on the F2 layer in the mid-latitude. Advances in Space Research. 58(9):1720-1731.
  • [7]. Pietrella, M., M. Pezzopane, ve A. Settimi, 2016. Ionospheric response under the influence of the solar eclipse occurred on 20 March 2015: Importance of autoscaled data and their assimilation for obtaining a reliable modeling of the ionosphere. Journal of Atmospheric Solar-Terrestrial Physics. 146:49-57.
  • [8]. Atıcı, R., S. Sağır, L.Y. Emelyanov, ve M. Lyashenko, 2021. Investigation of Ionospheric Electron Density Change During Two Partial Solar Eclipses and Its Comparison with Predictions of NeQuick 2 and IRI-2016 Models. Wireless Personal Communications:1-13.
  • [9]. Yaşar, M., 2021. The solar eclipse effect on diffusion processes of O++ O2→ O2++ O reaction for the upper ionosphere over Kharkov. Thermal Science,(00):7-7.
  • [10]. Yaşar, M., 2021. The change of diffusion processes for O++ N2→ NO++ N reaction in the ionospheric f region during the solar eclipse over Kharkov. Thermal Science,(00):6-6.
  • [11]. Adekoya, B.ve V. Chukwuma, 2016. Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude. Journal of Atmospheric and Solar-Terrestrial Physics. 138:136-160.
  • [12]. Shagimuratov, I.I., G.A. Yakimova, N.Y. Tepenitsyna, I.I. Efishov, ve L.M. Koltunenko, 2018. Effects of the Solar Eclipse of March 20, 2015 on the Total Electron Content over Europe. Russian Journal of Physical Chemistry B. 12(3):568-575.
  • [13]. Maurya, A.K., M.N. Shrivastava, ve K.N. Kumar, 2020. Ionospheric monitoring with the Chilean GPS eyeball during the South American total solar eclipse on 2nd July 2019. Scientific reports. 10(1):1-10.
  • [14]. Davis, C.J., M. Lockwood, S. Bell, J. Smith, ve E. Clarke, 2000. Ionospheric measurements of relative coronal brightness during the total solar eclipses of 11 August, 1999 and 9 July, 1945. in Annales Geophysicae. Springer.
  • [15]. Davis, C.J., E. Clarke, R. Bamford, M. Lockwood, ve S. Bell, 2001. Long term changes in EUV and X-ray emissions from the solar corona and chromosphere as measured by the response of the Earth's ionosphere during total solar eclipses from 1932 to 1999. in Annales Geophysicae.
  • [16]. Klobuchar, J.A., 1987. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on Aerospace Electronic Systems,(3):325-331.
  • [17]. Arikan, F., C. Erol, ve O. Arikan, 2004. Regularized estimation of vertical total electron content from GPS data for a desired time period. Radio Science. 39(6).
  • [18]. Atıcı, R., 2018. Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul, Turkey. Astrophysics and Space Science 363(11):231.
  • [19]. Arikan, F., C. Erol, ve O. Arikan, 2003. Regularized estimation of vertical total electron content from Global Positioning System data. Journal of Geophysical Research: Space Physics. 108(A12).
  • [20]. Nayir, H., F. Arikan, O. Arikan, ve C. Erol, 2007. Total electron content estimation with Reg‐Est. Journal of Geophysical Research: Space Physics. 112(A11).
  • [21]. Borchevkina, O., I. Karpov, ve A. Karpov, 2017. Observations of Acoustic Gravity Waves during the Solar Eclipse of March 20, 2015 in Kaliningrad. Russian Journal of Physical Chemistry B. 11(6):1024-1027.
  • [22]. Shagimuratov, I., G. Yakimova, N.Y. Tepenitsyna, I. Efishov, ve L. Koltunenko, 2018. Effects of the Solar Eclipse of March 20, 2015 on the Total Electron Content over Europe. Russian Journal of Physical Chemistry B. 12(3):568-575.
  • [23]. Galakhov, A.ve O. Akhmetov, 2017. Transverse resonance in the high-latitude section of the Earth–ionosphere waveguide during the solar eclipse of March 20, 2015. Geomagnetism and Aeronomy. 57(5):618-623.
  • [24]. Alizadeh, M.M., H. Schuh, S. Zare, S. Sobhkhiz-Miandehi, ve L.-C. Tsai, 2020. Remote sensing ionospheric variations due to total solar eclipse, using GNSS observations. Geodesy and Geodynamics. 11(3):202-210.
  • [25]. Hoque, M.M., D. Wenzel, N. Jakowski, T. Gerzen, J. Berdermann, V. Wilken, M. Kriegel, H. Sato, C. Borries, ve D. Minkwitz, 2016. Ionospheric response over Europe during the solar eclipse of March 20, 2015. Journal of Space Weather and Space Climate. 6:A36.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ramazan Atıcı 0000-0001-7884-0112

Selçuk Sağır 0000-0002-5698-0154

Publication Date December 26, 2022
Published in Issue Year 2022 Volume: 18 Issue: 4

Cite

APA Atıcı, R., & Sağır, S. (2022). The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18(4), 403-408. https://doi.org/10.18466/cbayarfbe.1019000
AMA Atıcı R, Sağır S. The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015. CBUJOS. December 2022;18(4):403-408. doi:10.18466/cbayarfbe.1019000
Chicago Atıcı, Ramazan, and Selçuk Sağır. “The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18, no. 4 (December 2022): 403-8. https://doi.org/10.18466/cbayarfbe.1019000.
EndNote Atıcı R, Sağır S (December 1, 2022) The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18 4 403–408.
IEEE R. Atıcı and S. Sağır, “The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015”, CBUJOS, vol. 18, no. 4, pp. 403–408, 2022, doi: 10.18466/cbayarfbe.1019000.
ISNAD Atıcı, Ramazan - Sağır, Selçuk. “The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18/4 (December 2022), 403-408. https://doi.org/10.18466/cbayarfbe.1019000.
JAMA Atıcı R, Sağır S. The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015. CBUJOS. 2022;18:403–408.
MLA Atıcı, Ramazan and Selçuk Sağır. “The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 18, no. 4, 2022, pp. 403-8, doi:10.18466/cbayarfbe.1019000.
Vancouver Atıcı R, Sağır S. The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015. CBUJOS. 2022;18(4):403-8.