Research Article
BibTex RIS Cite
Year 2023, Volume: 19 Issue: 1, 67 - 72, 28.03.2023

Abstract

References

  • Mosier-Boss, P. A. 2017. Review of SERS substrates for chemical sensing. Nanomaterials; 7(6): 142.
  • Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E., Van Duyne, R. P. 2012. SERS: Materials, applications, and the future background and mechanism. Materials Todays; 15(1-2): 16-25.
  • Sharma, B., Fernanda Cardinal, M., Kleinman, S. L., Greeneltch, N. G., Frontiera, R. R., Blaber, M. G., Schatz, G. C., Van Duyne, R. P. 2013. High-performance SERS substrates: Advances and challenges. MRS Bulletin; 38(8): 615–624.
  • Green, M., Liu, F. M. 2003. SERS substrates fabricated by island lithography: The silver/pyridine system. Journal of Physical Chemistry B; 107(47): 13015–13021.
  • Nowicka, A. B., Czaplicka, M., Kowalska, A. A., Szymborski, T., Kamińska, A. 2019. Flexible PET/ITO/Ag SERS platform for label-free detection of pesticides. Biosensors; 9(3): 111.
  • Suresh, V., Ding, L., Chew, A. B., Yap, F. L. 2018. Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Applied Nano Materials; 1(2): 886–893.
  • Xu, B. B., Zhang, Y. L., Zhang, W. Y., Liu, X. Q., Wang, J. N., Zhang, X. L., Zhang, D. D., Jiang, H. B., Zhang, R., Sun, H. B. 2013. Silver-coated rose petal: Green, facile, low-cost and sustainable fabrication of a SERS substrate with unique superhydrophobicity and high efficiency. Advanced Optical Materials; 1(1): 56–60.
  • Fodjo, E. K., Li, D. W., Marius, N. P., Albert, T., Long, Y. T. 2013. Low temperature synthesis and SERS application of silver molybdenum oxides. Journal of Materials Chemistry A; 1(7): 2558–2566.
  • Fu, J., Ye, W., Wang, C. 2013. Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules. Materials Chemistry and Physics; 141(1): 107–113.
  • Korkmaz, I., Sakir, M., Sarp, G., Salem, S., Torun, I., Volodkin, D., Yavuz, E., Onses, M. S., Yilmaz, E. 2021. Fabrication of superhydrophobic Ag@ZnO@Bi2WO6 membrane disc as flexible and photocatalytic active reusable SERS substrate. Journal of Molecular Structure; 1223: 129258.
  • Yuan, J., Lai, Y., Duan, J., Zhao, Q., Zhan, J. 2012. Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs. Journal of Colloid and Interface Science; 365(1): 122–126.
  • Ye, W., Chen, Y., Zhou, F., Wang, C., Li, Y. 2012. Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. Journal of Materials Chemistry; 22(35): 18327–18334.
  • Ji, R., Sun, W., Chu, Y. 2014. One-step hydrothermal synthesis of Ag/Cu2O heterogeneous nanostructures over Cu foil and their SERS applications. RSC Advances; 4(12): 6055–6059.
  • Sakir, M., Salem, S., Sanduvac, S. T., Sahmetlioglu, E., Sarp, G., Onses, M. S., Yilmaz, E. 2020. Photocatalytic green fabrication of Au nanoparticles on ZnO nanorods modified membrane as flexible and photocatalytic active reusable SERS substrates. Colloids Surf. A; 585: 124088.
  • Gao, Y., Zhang, C., Yang, Y., Yang, N., Lu, S., You, T., Yin, P. 2021. A high sensitive glucose sensor based on Ag nanodendrites/Cu mesh substrate via surface-enhanced Raman spectroscopy and electrochemical analysis. J. Alloys Compd.; 863: 158758.
  • Guo, T. L., Li, J. G., Sun, X., Sakka, Y. 2016. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules. Mater. Sci. Eng. C; 61: 97–104.
  • Sharma, H. S. S., Carmichael, E., McCall, D. 2016. Fabrication of SERS substrate for the detection of rhodamine 6G, glyphosate, melamine and salicylic acid, Vibrational Spectroscopy; 83: 159–169.
  • Zhou, Q., Meng, G., Liu, J., Huang, Z., Han, F., Zhu, C., Kim, D. J., Kim, T., Wu, N. 2017. A hierarchical nanostructure-based surface-enhanced Raman scattering sensor for preconcentration and detection of antibiotic pollutants. Adv. Mater. Technol.; 2(6): 1700028.
  • Salem, S., Sakir, M., Sahin, K., Korkmaz, I., Yavuz, E., Sarp, G., Onses, M. S., Yilmaz, E. 2020. Low bandgap microsphere-like magnetic nanocomposite: An enhanced photocatalyst for degradation of organic contaminants and fabrication of SERS-active surfaces. Colloids Surf. A; 589: 124436.
  • Sakir, Menekse, Yilmaz, E., Onses, M. S. 2020. SERS-active hydrophobic substrates fabricated by surface growth of Cu nanostructures. Microchemical Journal; 154: 104628.
  • Sakir, Menekse, Pekdemir, S., Karatay, A., Küçüköz, B., Ipekci, H. H., Elmali, A., Demirel, G., Onses, M. S. 2017. Fabrication of plasmonically active substrates using engineered silver nanostructures for SERS applications. ACS Applied Materials and Interfaces; 9(45): 39795–39803.
  • Cejkova, J., Prokopec, V., Brazdova, S., Kokaislova, A., Matejka, P., Stepanek, F. 2009. Characterization of copper SERS-active substrates prepared by electrochemical deposition. Applied Surface Science; 255(18): 7864–7870.
  • Zang, L. S., Chen, Y. M., Koc-Bilican, B., Bilican, I., Sakir, M., Wait, J., Çolak, A., Karaduman, T., Ceylan, A., Ali, A., Elbuken, C., Serdar Onses, M., Kaya, M. 2021. From bio-waste to biomaterials: The eggshells of Chinese oak silkworm as templates for SERS-active surfaces. Chemical Engineering Journal; 426: 131874.

One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid as an Ideal SERS Platform

Year 2023, Volume: 19 Issue: 1, 67 - 72, 28.03.2023

Abstract

Many ways to produce plasmonically-active substrates used for SERS applications, which is a non-destructive and reliable spectroscopy method, have been tried in recent years. Here we have presented an economical and easy procedure for synthesizing Ag NSs on Cu-grid in one step. Structural and elemental characterizations of Ag NSs on the Cu-grid were performed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Ag NSs on Cu-grids cause a high electromagnetic increase due to having complex morphology. Thus, the determination of R6G is easily realized even at very low concentrations such as 100 pM. It is predicted that different metallic nanostructures can be obtained by applying a similar recipe for different applications.

References

  • Mosier-Boss, P. A. 2017. Review of SERS substrates for chemical sensing. Nanomaterials; 7(6): 142.
  • Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E., Van Duyne, R. P. 2012. SERS: Materials, applications, and the future background and mechanism. Materials Todays; 15(1-2): 16-25.
  • Sharma, B., Fernanda Cardinal, M., Kleinman, S. L., Greeneltch, N. G., Frontiera, R. R., Blaber, M. G., Schatz, G. C., Van Duyne, R. P. 2013. High-performance SERS substrates: Advances and challenges. MRS Bulletin; 38(8): 615–624.
  • Green, M., Liu, F. M. 2003. SERS substrates fabricated by island lithography: The silver/pyridine system. Journal of Physical Chemistry B; 107(47): 13015–13021.
  • Nowicka, A. B., Czaplicka, M., Kowalska, A. A., Szymborski, T., Kamińska, A. 2019. Flexible PET/ITO/Ag SERS platform for label-free detection of pesticides. Biosensors; 9(3): 111.
  • Suresh, V., Ding, L., Chew, A. B., Yap, F. L. 2018. Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Applied Nano Materials; 1(2): 886–893.
  • Xu, B. B., Zhang, Y. L., Zhang, W. Y., Liu, X. Q., Wang, J. N., Zhang, X. L., Zhang, D. D., Jiang, H. B., Zhang, R., Sun, H. B. 2013. Silver-coated rose petal: Green, facile, low-cost and sustainable fabrication of a SERS substrate with unique superhydrophobicity and high efficiency. Advanced Optical Materials; 1(1): 56–60.
  • Fodjo, E. K., Li, D. W., Marius, N. P., Albert, T., Long, Y. T. 2013. Low temperature synthesis and SERS application of silver molybdenum oxides. Journal of Materials Chemistry A; 1(7): 2558–2566.
  • Fu, J., Ye, W., Wang, C. 2013. Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules. Materials Chemistry and Physics; 141(1): 107–113.
  • Korkmaz, I., Sakir, M., Sarp, G., Salem, S., Torun, I., Volodkin, D., Yavuz, E., Onses, M. S., Yilmaz, E. 2021. Fabrication of superhydrophobic Ag@ZnO@Bi2WO6 membrane disc as flexible and photocatalytic active reusable SERS substrate. Journal of Molecular Structure; 1223: 129258.
  • Yuan, J., Lai, Y., Duan, J., Zhao, Q., Zhan, J. 2012. Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs. Journal of Colloid and Interface Science; 365(1): 122–126.
  • Ye, W., Chen, Y., Zhou, F., Wang, C., Li, Y. 2012. Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. Journal of Materials Chemistry; 22(35): 18327–18334.
  • Ji, R., Sun, W., Chu, Y. 2014. One-step hydrothermal synthesis of Ag/Cu2O heterogeneous nanostructures over Cu foil and their SERS applications. RSC Advances; 4(12): 6055–6059.
  • Sakir, M., Salem, S., Sanduvac, S. T., Sahmetlioglu, E., Sarp, G., Onses, M. S., Yilmaz, E. 2020. Photocatalytic green fabrication of Au nanoparticles on ZnO nanorods modified membrane as flexible and photocatalytic active reusable SERS substrates. Colloids Surf. A; 585: 124088.
  • Gao, Y., Zhang, C., Yang, Y., Yang, N., Lu, S., You, T., Yin, P. 2021. A high sensitive glucose sensor based on Ag nanodendrites/Cu mesh substrate via surface-enhanced Raman spectroscopy and electrochemical analysis. J. Alloys Compd.; 863: 158758.
  • Guo, T. L., Li, J. G., Sun, X., Sakka, Y. 2016. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules. Mater. Sci. Eng. C; 61: 97–104.
  • Sharma, H. S. S., Carmichael, E., McCall, D. 2016. Fabrication of SERS substrate for the detection of rhodamine 6G, glyphosate, melamine and salicylic acid, Vibrational Spectroscopy; 83: 159–169.
  • Zhou, Q., Meng, G., Liu, J., Huang, Z., Han, F., Zhu, C., Kim, D. J., Kim, T., Wu, N. 2017. A hierarchical nanostructure-based surface-enhanced Raman scattering sensor for preconcentration and detection of antibiotic pollutants. Adv. Mater. Technol.; 2(6): 1700028.
  • Salem, S., Sakir, M., Sahin, K., Korkmaz, I., Yavuz, E., Sarp, G., Onses, M. S., Yilmaz, E. 2020. Low bandgap microsphere-like magnetic nanocomposite: An enhanced photocatalyst for degradation of organic contaminants and fabrication of SERS-active surfaces. Colloids Surf. A; 589: 124436.
  • Sakir, Menekse, Yilmaz, E., Onses, M. S. 2020. SERS-active hydrophobic substrates fabricated by surface growth of Cu nanostructures. Microchemical Journal; 154: 104628.
  • Sakir, Menekse, Pekdemir, S., Karatay, A., Küçüköz, B., Ipekci, H. H., Elmali, A., Demirel, G., Onses, M. S. 2017. Fabrication of plasmonically active substrates using engineered silver nanostructures for SERS applications. ACS Applied Materials and Interfaces; 9(45): 39795–39803.
  • Cejkova, J., Prokopec, V., Brazdova, S., Kokaislova, A., Matejka, P., Stepanek, F. 2009. Characterization of copper SERS-active substrates prepared by electrochemical deposition. Applied Surface Science; 255(18): 7864–7870.
  • Zang, L. S., Chen, Y. M., Koc-Bilican, B., Bilican, I., Sakir, M., Wait, J., Çolak, A., Karaduman, T., Ceylan, A., Ali, A., Elbuken, C., Serdar Onses, M., Kaya, M. 2021. From bio-waste to biomaterials: The eggshells of Chinese oak silkworm as templates for SERS-active surfaces. Chemical Engineering Journal; 426: 131874.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Menekse Sakir 0000-0003-3102-0947

Publication Date March 28, 2023
Published in Issue Year 2023 Volume: 19 Issue: 1

Cite

APA Sakir, M. (2023). One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid as an Ideal SERS Platform. Celal Bayar University Journal of Science, 19(1), 67-72.
AMA Sakir M. One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid as an Ideal SERS Platform. CBUJOS. March 2023;19(1):67-72.
Chicago Sakir, Menekse. “One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid As an Ideal SERS Platform”. Celal Bayar University Journal of Science 19, no. 1 (March 2023): 67-72.
EndNote Sakir M (March 1, 2023) One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid as an Ideal SERS Platform. Celal Bayar University Journal of Science 19 1 67–72.
IEEE M. Sakir, “One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid as an Ideal SERS Platform”, CBUJOS, vol. 19, no. 1, pp. 67–72, 2023.
ISNAD Sakir, Menekse. “One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid As an Ideal SERS Platform”. Celal Bayar University Journal of Science 19/1 (March 2023), 67-72.
JAMA Sakir M. One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid as an Ideal SERS Platform. CBUJOS. 2023;19:67–72.
MLA Sakir, Menekse. “One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid As an Ideal SERS Platform”. Celal Bayar University Journal of Science, vol. 19, no. 1, 2023, pp. 67-72.
Vancouver Sakir M. One-Step Fabrication of Silver Nanostructures Decorated Cu-Grid as an Ideal SERS Platform. CBUJOS. 2023;19(1):67-72.