Research Article
BibTex RIS Cite

Effects of Forces and Material Types on Fatigue Analysis of Beams

Year 2023, Volume: 19 Issue: 4, 315 - 321, 29.12.2023
https://doi.org/10.18466/cbayarfbe.1324800

Abstract

This numerical and statistical study deals with the evaluate the effects of forces and material types on safety factor and equivalent alternating stress of beams made of metal materials. Numerical calculations were performed by using ANSYS Workbench software. Design of analyzes based on different control factors was determined utilizing Taguchi L9 orthogonal array design consisting of two control factors consisting of three levels. The first and second control factors were chosen as applied force and material type, respectively. In the finite element modeling, beams with clamped-free boundary conditions were considered. Determination of optimal levels of all variable control factors was found using signal-to-noise ratio analysis. The contribution rate and significance level of all control factors on the safety factor and equivalent alternating stress were calculated utilizing analysis of variance. According to the results calculated from this study, the optimum results for safety factor and equivalent alternating stress of beams were obtained by using the first levels of all control factors. While the increase in the applied force values causes a decrease in the safety factor, it leads to an increase in the equivalent alternating stress.

References

  • [1]. Pamuk, Ö., Durgutlu, A. 2018. Patlama kaynağı yöntemi ile birleştirilen östenitik paslanmaz çelik (AISI 316L)–S235JR kompozit malzemelerde patlayıcı oranının mikroyapı ve yorulma özelliklerine etkisi. Politeknik Dergisi, 21: 527-34.
  • [2]. Aydın, Ş. 2006. Sürtünme karıştırma kaynağı ile yapılan alüminyumun kaynağında kaynak bölgesinin eğmeli yorulma dayanımının incelenmesi. Politeknik Dergisi, 9: 125-30.
  • [3]. Cakiroglu, R., Günay, M. 2021. Elektro erozyonla tornalama yöntemiyle işlenen soğuk iş takım çeliğinin yorulma ömrünün tahmini. Politeknik Dergisi, 24: 495-502.
  • [4]. Shetye, N., Karlsson, M.H., Wennhage, P., Barsoum, Z. 2022. Life-Cycle Energy Analysis of a High Strength Steel Heavy Vehicle Component Subjected to Fatigue Loading. Procedia Structural Integrity, 38: 538-45.
  • [5]. Zhao, X., Jin, N., Liu, X., Shi, Z. 2022. Fatigue failure analysis of steel crane beams with variable-section supports. Engineering Failure Analysis, 136: 106217.
  • [6]. Feng, R., Chen, P.-Y., Wang, F., Xu, Y., Zhu, J.-H. 2022. Fatigue life of C-FRCM strengthened corroded RC continuous beams under multi-intervention system. Composite Structures, 290: 115512.
  • [7]. Gao, L., Sun, C., Zhuang, M.-L., Hou, M. 2022. Fatigue life prediction of HTRB630E steel bars based on modified coffin-manson model under pre-strain. Structures, 38: 28-39.
  • [8]. Oller, S., Salomón, O., Oñate, E. 2005. A continuum mechanics model for mechanical fatigue analysis. Computational Materials Science, 32: 175-95.
  • [9]. Zalnezhad, E., Sarhan, A.A., Hamdi, M. 2013. Investigating the fretting fatigue life of thin film titanium nitride coated aerospace Al7075-T6 alloy. Materials Science and Engineering: A, 559: 436-46.
  • [10]. Cheng, G., Plumtree, A. 1998. A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion. International Journal of Fatigue, 20: 495-501.
  • [11]. Shang, D.-G., Yao, W.-X. 1999. A nonlinear damage cumulative model for uniaxial fatigue. International Journal of Fatigue, 21: 187-94.
  • [12]. Svensson, T. 2002. Cumulative fatigue damage taking the threshold into account. Fatigue & Fracture of Engineering Materials & Structures, 25: 871-5.
  • [13]. Jono, M. 2005. Fatigue damage and crack growth under variable amplitude loading with reference to the counting methods of stress–strain ranges. International Journal of Fatigue, 27: 1006-15.
  • [14]. Makkonen, M. 2009. Predicting the total fatigue life in metals. International Journal of fatigue, 31: 1163-75.
  • [15]. Zhu, S.P., Huang, H.Z. 2010. A generalized frequency separation–strain energy damage function model for low cycle fatigue–creep life prediction. Fatigue & Fracture of Engineering Materials & Structures, 33: 227-37.
  • [16]. Majzoobi, G., Hojjati, R., Nematian, M., Zalnejad, E., Ahmadkhani, A., Hanifepoor, E. 2010. A new device for fretting fatigue testing. Transactions of the indian institute of metals, 63: 493-7.
  • [17]. Kulkarni, S.S., Sun, L., Moran, B., Krishnaswamy, S., Achenbach, J. 2006. A probabilistic method to predict fatigue crack initiation. International Journal of Fracture, 137: 9-17.
  • [18]. Scott-Emuakpor, O.E., Shen, H., George, T., Cross, C. 2008. An energy-based uniaxial fatigue life prediction method for commonly used gas turbine engine materials. Journal of engineering for gas turbines and power, 130.
  • [19]. Turna, E., Kafkas, F., Şeker, U., Yücesu, H.S. 2018. Kauçuk hava süspansiyon körüklerinin üretim yöntemi ve yorulma ömrünün ürün kalitesi üzerine etkisinin belirlenmesi. Politeknik Dergisi, 21: 759-64.
  • [20]. Metkar, R., Sunnapwar, V., Hiwase, S. 2011. A fatigue analysis and life estimation of crankshaft-a review. International Journal of Mechanical and Materials Engineering, 6: 425-30.
  • [21]. Satyanarayana, N., Sambaiah, C. 2012. Fatigue analysis of Aluminum Alloy wheel under radial load. International Journal of Mechanical and Industrial Engineering (IJMIE), ISSN: 1-6.
  • [22]. Patel, S., Kumar, V., Nareliya, R. 2013. Fatigue analysis of rail joint using finite element method. International Journal of Research in Engineering and Technology, 2: 80-4.
  • [23]. Sameer Chakravarthy, NC., Subbaratnam, B. 2014. Finite element analysis and fatigue analysis of spur gear under random Loading. International Journal of Mechanical Engineering & Robotics Research, 3: 533-41.
  • [24]. Tulsidas, D., Shantharaja, M., Bharath, V.G. 2014. Life Estimation of a Steam Turbine Blade Using Low Cycle Fatigue Analysis. Procedia Materials Science, 5: 2392-401.
  • [25]. ANSYS. Software (ANSYS Inc., Canonsburg, PA, USA) (www.ansys.com).
  • [26]. Ross, P.J. Taguchi Techniques for Quality Engineering, McGraw-Hill International Editions, 2nd Edition, New York, USA, 1996.
Year 2023, Volume: 19 Issue: 4, 315 - 321, 29.12.2023
https://doi.org/10.18466/cbayarfbe.1324800

Abstract

References

  • [1]. Pamuk, Ö., Durgutlu, A. 2018. Patlama kaynağı yöntemi ile birleştirilen östenitik paslanmaz çelik (AISI 316L)–S235JR kompozit malzemelerde patlayıcı oranının mikroyapı ve yorulma özelliklerine etkisi. Politeknik Dergisi, 21: 527-34.
  • [2]. Aydın, Ş. 2006. Sürtünme karıştırma kaynağı ile yapılan alüminyumun kaynağında kaynak bölgesinin eğmeli yorulma dayanımının incelenmesi. Politeknik Dergisi, 9: 125-30.
  • [3]. Cakiroglu, R., Günay, M. 2021. Elektro erozyonla tornalama yöntemiyle işlenen soğuk iş takım çeliğinin yorulma ömrünün tahmini. Politeknik Dergisi, 24: 495-502.
  • [4]. Shetye, N., Karlsson, M.H., Wennhage, P., Barsoum, Z. 2022. Life-Cycle Energy Analysis of a High Strength Steel Heavy Vehicle Component Subjected to Fatigue Loading. Procedia Structural Integrity, 38: 538-45.
  • [5]. Zhao, X., Jin, N., Liu, X., Shi, Z. 2022. Fatigue failure analysis of steel crane beams with variable-section supports. Engineering Failure Analysis, 136: 106217.
  • [6]. Feng, R., Chen, P.-Y., Wang, F., Xu, Y., Zhu, J.-H. 2022. Fatigue life of C-FRCM strengthened corroded RC continuous beams under multi-intervention system. Composite Structures, 290: 115512.
  • [7]. Gao, L., Sun, C., Zhuang, M.-L., Hou, M. 2022. Fatigue life prediction of HTRB630E steel bars based on modified coffin-manson model under pre-strain. Structures, 38: 28-39.
  • [8]. Oller, S., Salomón, O., Oñate, E. 2005. A continuum mechanics model for mechanical fatigue analysis. Computational Materials Science, 32: 175-95.
  • [9]. Zalnezhad, E., Sarhan, A.A., Hamdi, M. 2013. Investigating the fretting fatigue life of thin film titanium nitride coated aerospace Al7075-T6 alloy. Materials Science and Engineering: A, 559: 436-46.
  • [10]. Cheng, G., Plumtree, A. 1998. A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion. International Journal of Fatigue, 20: 495-501.
  • [11]. Shang, D.-G., Yao, W.-X. 1999. A nonlinear damage cumulative model for uniaxial fatigue. International Journal of Fatigue, 21: 187-94.
  • [12]. Svensson, T. 2002. Cumulative fatigue damage taking the threshold into account. Fatigue & Fracture of Engineering Materials & Structures, 25: 871-5.
  • [13]. Jono, M. 2005. Fatigue damage and crack growth under variable amplitude loading with reference to the counting methods of stress–strain ranges. International Journal of Fatigue, 27: 1006-15.
  • [14]. Makkonen, M. 2009. Predicting the total fatigue life in metals. International Journal of fatigue, 31: 1163-75.
  • [15]. Zhu, S.P., Huang, H.Z. 2010. A generalized frequency separation–strain energy damage function model for low cycle fatigue–creep life prediction. Fatigue & Fracture of Engineering Materials & Structures, 33: 227-37.
  • [16]. Majzoobi, G., Hojjati, R., Nematian, M., Zalnejad, E., Ahmadkhani, A., Hanifepoor, E. 2010. A new device for fretting fatigue testing. Transactions of the indian institute of metals, 63: 493-7.
  • [17]. Kulkarni, S.S., Sun, L., Moran, B., Krishnaswamy, S., Achenbach, J. 2006. A probabilistic method to predict fatigue crack initiation. International Journal of Fracture, 137: 9-17.
  • [18]. Scott-Emuakpor, O.E., Shen, H., George, T., Cross, C. 2008. An energy-based uniaxial fatigue life prediction method for commonly used gas turbine engine materials. Journal of engineering for gas turbines and power, 130.
  • [19]. Turna, E., Kafkas, F., Şeker, U., Yücesu, H.S. 2018. Kauçuk hava süspansiyon körüklerinin üretim yöntemi ve yorulma ömrünün ürün kalitesi üzerine etkisinin belirlenmesi. Politeknik Dergisi, 21: 759-64.
  • [20]. Metkar, R., Sunnapwar, V., Hiwase, S. 2011. A fatigue analysis and life estimation of crankshaft-a review. International Journal of Mechanical and Materials Engineering, 6: 425-30.
  • [21]. Satyanarayana, N., Sambaiah, C. 2012. Fatigue analysis of Aluminum Alloy wheel under radial load. International Journal of Mechanical and Industrial Engineering (IJMIE), ISSN: 1-6.
  • [22]. Patel, S., Kumar, V., Nareliya, R. 2013. Fatigue analysis of rail joint using finite element method. International Journal of Research in Engineering and Technology, 2: 80-4.
  • [23]. Sameer Chakravarthy, NC., Subbaratnam, B. 2014. Finite element analysis and fatigue analysis of spur gear under random Loading. International Journal of Mechanical Engineering & Robotics Research, 3: 533-41.
  • [24]. Tulsidas, D., Shantharaja, M., Bharath, V.G. 2014. Life Estimation of a Steam Turbine Blade Using Low Cycle Fatigue Analysis. Procedia Materials Science, 5: 2392-401.
  • [25]. ANSYS. Software (ANSYS Inc., Canonsburg, PA, USA) (www.ansys.com).
  • [26]. Ross, P.J. Taguchi Techniques for Quality Engineering, McGraw-Hill International Editions, 2nd Edition, New York, USA, 1996.
There are 26 citations in total.

Details

Primary Language English
Subjects Photochemistry
Journal Section Articles
Authors

Savaş Evran 0000-0002-7512-5997

Publication Date December 29, 2023
Published in Issue Year 2023 Volume: 19 Issue: 4

Cite

APA Evran, S. (2023). Effects of Forces and Material Types on Fatigue Analysis of Beams. Celal Bayar University Journal of Science, 19(4), 315-321. https://doi.org/10.18466/cbayarfbe.1324800
AMA Evran S. Effects of Forces and Material Types on Fatigue Analysis of Beams. CBUJOS. December 2023;19(4):315-321. doi:10.18466/cbayarfbe.1324800
Chicago Evran, Savaş. “Effects of Forces and Material Types on Fatigue Analysis of Beams”. Celal Bayar University Journal of Science 19, no. 4 (December 2023): 315-21. https://doi.org/10.18466/cbayarfbe.1324800.
EndNote Evran S (December 1, 2023) Effects of Forces and Material Types on Fatigue Analysis of Beams. Celal Bayar University Journal of Science 19 4 315–321.
IEEE S. Evran, “Effects of Forces and Material Types on Fatigue Analysis of Beams”, CBUJOS, vol. 19, no. 4, pp. 315–321, 2023, doi: 10.18466/cbayarfbe.1324800.
ISNAD Evran, Savaş. “Effects of Forces and Material Types on Fatigue Analysis of Beams”. Celal Bayar University Journal of Science 19/4 (December 2023), 315-321. https://doi.org/10.18466/cbayarfbe.1324800.
JAMA Evran S. Effects of Forces and Material Types on Fatigue Analysis of Beams. CBUJOS. 2023;19:315–321.
MLA Evran, Savaş. “Effects of Forces and Material Types on Fatigue Analysis of Beams”. Celal Bayar University Journal of Science, vol. 19, no. 4, 2023, pp. 315-21, doi:10.18466/cbayarfbe.1324800.
Vancouver Evran S. Effects of Forces and Material Types on Fatigue Analysis of Beams. CBUJOS. 2023;19(4):315-21.