Research Article
BibTex RIS Cite

Deep Rolling of Al6061-T6 Material and Performance Evaluation with New Type Designed WNMG Formed Rolling Tool

Year 2024, Volume: 20 Issue: 1, 29 - 40, 27.03.2024
https://doi.org/10.18466/cbayarfbe.1405976

Abstract

In deep rolling, ball and roller type burnishing tools are generally used. It is generally difficult to deep roll contours with curved and conical shapes with the existing rolling tools. The aim of this study is to design experiments with a roller insert that will be an alternative to deep rolling inserts being used now and that can be fixed on the present tool holders; and to investigate the usability of them including curve and conical formed workpieces with the help of this designed tool. For this purpose, a spherical insert with a radius of 1 mm in the form of WNMG was designed based on the WNMG insert model and used in deep rolling of Al6061-T6 material using different forms and parameters. 143, 330, 495 N rolling force, 0.04, 0.08, 0.12 mm/rev feed and 400, 600, 800 rpm spindle speed were selected as rolling parameters. By examining the microhardness and surface structure of deep-rolled Al6061 parts, the achievability of the results of existing tools in deep rolling was investigated. At the end of the study, it was determined that the new type of rolling tool produced results similar to the existing tools in deep rolling in terms of microhardness and surface morphology, which enabled that the workpieces with curve and conical forms could also be rolled, and that this rolling tool could be used as an alternative in deep rolling.

Ethical Statement

There are no ethical issues after the publication of this manuscript.

Supporting Institution

Batman Üniversity

Project Number

BTÜBAP-2022-YL-05

Thanks

In order to carry out the research, Batman University unit of BAP (Scientific Research Projects) provided financial support to this study numbered BTUBAP-2022-YL-05.

References

  • [1]. Wandra, R., Prakash, C., Singh, S. 2022. Experimental investigation and optimization of surface roughness of β-Phase titanium alloy by ball burnishing assisted electrical discharge cladding for implant applications. Materials Today: Proceedings; 48, 975-980, doi: 10.1016/j.matpr.2021.06.070.
  • [2]. Kinner-Becker, T., Zmich, R., Sölter, J., Meyer, D. 2021. Combined laser and deep rolling process as a means to study thermo-mechanical processes. Procedia CIRP; 102, 369-374, doi: 10.1016/j.procir.2021.09.063.
  • [3]. Prabhu, P. R., Kulkarni, S. M., Sharma, S. S. 2011. An experimental investigation on the effect of deep cold rolling parameters on surface roughness and hardness of AISI 4140 steel. World Academy of Science, Engineering and Technology; 60, 1594-1598.
  • [4]. Başak, H., Sönmez, F., 2015. In Burnishing Process, Inspectation of The Burnishing Apparaus (Ball, Roller, Twıst Roller) Effects on Surface Roughness and Surface Hardness, Journal of Polytechnic; 18(3), 125-132, doi: 10.2339/2015.18.3, 125-132.
  • [5]. Mendi, F., Takım tezgâhları teori ve hesapları, ISBN:975-06008-0-3, Ankara, 1996.
  • [6]. Özkan, S. 2006. Sürtünme karıştırma kaynağı ile birleştirilen parçalarda haddeleme (burnishing) ile yüzeylerin işlenmesi, haddelemenin yüzey pürüzlülüğüne ve sertleşmeye etkisinin incelenmesi. M.S. thesis, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [7]. Akyüz, M. 2020. Bilyeli haddeleme yönteminde işlem parametrelerinin Al7075-T6 alüminyum alaşımının mekanik özellikleri üzerindeki etkilerinin deneysel olarak araştırılması. M.S. thesis, Fen Bilimleri Enstitüsü Fırat Üniversitesi, Elazığ.
  • [8]. Hassan A. D., Maqableh A. M., 2000. The effects of initial burnishing parameters on non-ferrous components. Journal of Materials Processing Technology; 102(1-3), 115-121, doi: 10.1016/S0924-0136(00)00464-7.
  • [9]. Luo H., Wang L., Zhang C. 2011. Study on the aluminum alloy burnishing processing and the existence of the outstripping phenomenon. Journal of Materials Processing Technology; 116, 88-90, doi: 10.1016/S0924-0136(01)00847-0.
  • [10]. Hassan, A. M. 1997. The effects of ball-and roller-burnishing on the surface roughness and hardness of some non-ferrous metals. Journal of materials processing technology; 72(3), 385-391, doi: 10.1016/S0924-0136(97)00199-4.
  • [11]. Yu X., Wang L. 1999. Effect of various parameters on the surface roughness of an aluminium alloy burnished with a spherical surfaced polycrystalline diamond tool. International Journal of Machine Tools & Manufacture; 39(3), 459–469, doi: 10.1016/S0890-6955(98)00033-9.
  • [12]. El-Axir, M.H., El-Khabeery, M.M. 2003. Influence of orthogonal burnishing parameters on surface characteristics for various materials. Journal of Materials Processing Technology; 132, 82–89, doi: 10.1016/S0924-0136(02)00269-8.
  • [13]. Zhuang, W., Liu, Q., Djugum, R., Sharp, P.K., Paradowska, A. 2014. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy. Applied Surface. Science; 320, 558–562, doi: 10.1016/ j.apsusc.2014.09.139.
  • [14]. Majzoobi, G.H., Jouneghani, F.Z., Khademi, E. 2016. Experimental and numerical studies on the effect of deep rolling on bending fretting fatigue resistance of Al7075. Int. J. Adv. Manuf. Technol; 82, 2137–2148, doi: 10.1007/s00170-015-7542-z.
  • [15]. Khabeery M. M., Axir M. H., 2001. Experimental techniques for studying the effects of milling roller-burnishing parameters on surface integrity. International Journal of Machine Tools & Manufacture; 41(12), 1705–1719, doi: 10.1016/S0890-6955(01)00036-0.
  • [16]. Basak H., Goktas H.H. 2009. Burnishing process on al-alloy and optimization of surface roughness and surface hardness by fuzzy logic. Materials and Design; 30, 1275–1281, doi: 10.1016/j.matdes.2008. 06.063.
  • [17]. Tadic B., Todorovic M. P., Luzanin O., Miljanic D., Jeremic M. B., Bogdanovic B., Vukelic D. 2013. Using specially designed high-stiffness burnishing tool to achieve high-quality surface finish. The International Journal of Advanced Manufacturing Technology; 67, 601–611, doi: 10.1007/s00170-012-4508-2.
  • [18]. Akkurt, A., Ovalı, İ. 2009. The effects of burnishing and conventional finishing processes on surface roughness and roundness of the Al 6061 aluminum parts. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi; 15(3), 371-382.
  • [19]. Akkurt, A. Delik yüzeylerine uygulanan yüzey iyileştirme işlemlerinin alüminyum alaşımı malzemeler üzerinde araştırılması, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Turkey, 2009.
  • [20]. Başak, H. 2015. Haddeleme (Galetaj) ile 5083 Al-Mg malzeme yüzeyinin işlenmesi, haddeleme parametrelerinin yüzey pürüzlülüğü ve yüzey sertliğine etkilerinin incelenmesi. GU J Sci Part:C; 3(2), 471-476.
  • [21]. Malyer, E. 2018. Examining the residual stress on the burnished AA7075-T6 aluminum alloy. Journal of Polytechnic; 21(3), 565-573, doi: 10.2339/politeknik.389592.
  • [22]. Maiß, O., Röttger, K. 2022. Monitoring the surface quality for various deep rolling processes–limits and experimental results. Procedia CIRP; 108, 857-862, doi. 10.1016/j.procir.2022.05.199.
  • [23]. Oevermann, T., Wegener, T., Liehr, A., Hübner, L., Niendorf, T. 2021. Evolution of residual stress, microstructure and cyclic performance of the equiatomic high-entropy alloy CoCrFeMnNi after deep Rolling. International Journal of Fatigue; 153, 106513.
  • [24]. Martins, A. M. Leal, C. A. Campidelli, A. F. Abrao, A. M.; Rodrigues, P. C. Magalhães, F. C. Meyer, K. 2022. Assessment of the temperature distribution in deep rolling of hardened AISI 4140 steel. Journal of Manufacturing Processes; 73, 686-694, doi. 10.1016/j.jmapro.2021.11.052.
  • [25]. Bogachev, I., Knowles, K. M., Gibson, G. J. 2021. Deep cold rolling of single crystal nickel-based superalloy CMSX-4. Materialia; 20, 101240, 2021.
  • [26]. Hettig, M., Meyer, D. 2020. Sequential multistage deep rolling under varied contact conditions. Procedia CIRP; 87, 291-296, doi. 10.1016/j.procir.2020. 02.027.
  • [27]. Basak, H., Ozkan, M., Toktas, I. 2019. Experimental research and ANN modeling on the impact of the ball burnishing process on the mechanical properties of 5083 Al-Mg material. Kovové materiály-Metallic Materials; 57(1), 61-74, doi. 10.4149/km 2019_1_61.
  • [28]. Delgado, P., Cuesta, I. I., Alegre, J. M., Díaz, A. 2016. State of the art of Deep Rolling. Precision Engineering; 46, 1-10, doi. 10.1016/j.precisioneng.2016. 05.001.
  • [29]. Sönmez, F., Başak, H., Baday, Ş. 2016. Haddeleme işleminin yüzey yanit yöntemi ile analizi. Gazi University Journal of Science Part C: Design and Technology, 4(4), 275-283.
  • [30]. Adıyaman, O. 2024. Investigation on the Application of Worn Cutting Tool Inserts as Burnishing Tools. Strojniški vestnik - Journal of Mechanical Engineering, 70(1-2), 92-102. doi:http://dx.doi.org/10.5545/sv-jme.2023.781
  • [31]. Blasón, S., Rodríguez, C., Belzunce, J., Suárez, C. 2017. Fatigue behaviour improvement on notched specimens of two different steels through deep rolling, a surface cold treatment. Theoretical and Applied Fracture Mechanics; 92, 223-228, doi. 10.1016/j.tafmec.2017.08.003.
  • [32]. Prabhu, P. R., Kulkarni, S. M., Sharma, S. 2020. Multi-response optimization of the turn-assisted deep cold rolling process parameters for enhanced surface characteristics and residual stress of AISI 4140 steel shafts”, Journal of Materials Research and Technology; 9,(5), 11402-11423, doi: 10.1016/j.jmrt.2020.08.025
  • [33]. El-Axir, M. H., Othman, O. M., & Abodiena, A. M. 2008. Improvements in out-of-roundness and microhardness of inner surfaces by internal ball burnishing process. Journal of materials processing technology, 196(1-3), 120-128. doi: 0.1016/j.jmatprotec.2007.05.028
  • [34]. Aydın, F., Adıyaman, O. 2023. Experimental ınvestigation of new type ınsert in deep rolling of al6061-t6 material. Rahva Journal of Technical and Social Studies; 3(1), 58-72.
  • [35]. Aydın, F., Adıyaman, O. 2023. Yeni tip ınsert uç ile Al6061 malzemeye bilyeli parlatma yöntemi uygulanması ve yüzey özelliklerinin incelenmesi. 2nd International Rahva Technical and Social Researches Congress, Bitlis, Turkey, 171-172.
  • [36]. Yüce Teknik, 2023, https://www.yuceteknik.com/ Mekanik-Kalip-Yaylari-Yesil-Yay,PR-1779.html (accessed: 20/08/2023).
  • [37]. Technical Data Sheet, 2024, https://www.skf.com/binaries/pub12/Images/LubriFluid_TD_US_tcm_12-158093.pdf, (accessed :06/03/2024)
  • [38]. Lee SH. 2003. Optimization of cutting parameters for burr minimization in face-milling operations. Int J Prod Res 41 (3):497 doi:10.1080/0020754021000042382.
  • [39]. Lin TR (2002) Optimization technique for face milling stainless steel with multiple performance characteristics. Int J Adv Manuf Technol 19:330 doi:10.1007/s001700200021
  • [40]. Ross PJ (1996) Taguchi techniques for quality engineering, 2nd edn. McGraw-Hill, New York
  • [41]. El-Tayeb, N. S. M., Low K. O., Brevern P. V. 2007. Influence of roller burnishing contact width and burnishing orientation on surface quality and tribological behaviour of Aluminium 6061. Journal of materials processing technology; 186(3), 272-278, doi: 10.1016/j.jmatprotec.2006.12.044.
  • [42]. Egea A.J.S., Rodríguez A., Celentano D., A.Calleja, Lacalle L.N. 2019. Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy. Surface & Coatings Technology; 367, 327–335, doi. 10.1016/j.surfcoat.2019. 04.010.
  • [43]. Koçak, H. 2020. Improving the surface properties of Al 6013 and MS 58 materials by ball burnishing process for hole. GU J Sci, Part C; 8(4), 972-980, doi: 10.29109/gujsc.821576.
  • [44]. Martins, A. M., Oliveira, D. A. D., de Castro Magalhães, F., & Abrão, A. M. (2023). Relationship between surface characteristics and the fatigue life of deep rolled AISI 4140 steel. The International Journal of Advanced Manufacturing Technology, 129(3), 1127-1143. doi: 10.1007/s00170-023-12332-x.
  • [45]. Shetty, R., Rao, S. S., & Gaitonde, V. N. 2017. Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process. Journal of Materials Research and Technology, 6(1), 13-32. doi: 10.1016/j.jmrt.2016.03.007.
  • [46]. Wang, Z., Xiao, Z., Huang, C., Wen, L., & Zhang, W. 2017. Influence of ultrasonic surface rolling on microstructure and wear behavior of selective laser melted Ti-6Al-4V alloy. Materials, 10(10), 1203, doi: 10.3390/ma10101203.
  • [47]. Attabi, S., Himour, A., Laouar, L., & Motallebzadeh, A. 2021. Mechanical and wear behaviors of 316L stainless steel after ball burnishing treatment. Journal of Materials Research and Technology, 15, 3255-3267. doi: 10.1016/j.jmrt.2021.09.081.
  • [48]. Herbster, M., Harnisch, K., Haberland, E., Kriegel, P., Döbberthin, C., Heyn, A., Halle, T. 2021. Effect of deep rolling on subsurface conditions of CoCr28Mo6 wrought alloy to improve the wear resistance of endoprostheses. Journal of the Mechanical Behavior of Biomedical Materials; 118, 104398, doi: 10.1016/j.jmbbm.2021.104398.
  • [49]. Chen, M., He, J., Wang, M., Li, J., Xing, S., Gui, K., Liu, Q. 2022. Effects of deep cold rolling on the evolution of microstructure, microtexture, and mechanical properties of 2507 duplex stainless steel. Materials Science and Engineering: A; 845, 143224. doi: 10.1016/j.msea.2022.143224.

Yeni Tip Tasarlanan WNMG Formlu Haddeleme Takımı ile Al6061-T6 Malzemenin Derin Haddelenmesi ve Performans Değerlendirmesi

Year 2024, Volume: 20 Issue: 1, 29 - 40, 27.03.2024
https://doi.org/10.18466/cbayarfbe.1405976

Abstract

Derin haddelemede genel olarak bilyeli ve makaralı tip ezici uçlar kullanılmaktadır. Ayrıca mevcut haddeleme takımları ile çoğunlukla eğrisel ve konik forma sahip kontürlerin derin haddelenmesi zordur. Bu çalışmada amaç, kullanılan ezici uçlara alternatif olacak ve mevcut takım tutuculara monte edilebilen bir ezici uç tasarımı yapmak ve tasarlanan bu takımla eğrisel ve konik formlu parçalar da dahil olmak üzere derin haddelemede kullanılabilirliğini araştırmaktır. Bu amaçla WNMG insert uç modeli baz alınarak WNMG formunda 1 mm radüslü küresel uca sahip ezici tip uç tasarlanmış ve farklı form ve parametreler kullanılarak Al6061-T6 malzemenin derin haddelemesinde kullanılmıştır. İşlem parametreleri olarak 143, 330, 495 N haddeleme kuvveti, 0.04, 0.08, 0.12 mm/dev ilerleme ve 400, 600, 800 dev/dak devir sayısı seçilmiştir. Derin haddelenmiş Al6061 parçalardaki mikrosertlik ve yüzey yapısı incelenerek mevcut takımların derin haddelemedeki sonuçlarının elde edilebilirliği araştırılmıştır. Çalışma sonunda yeni tip ezici takımın mikrosertlik ve yüzey morfolojisi açısından derin haddelemedeki mevcut takımlara benzer sonuçlar ürettiği, eğrisel ve konik formlara sahip parçaların da haddelenebildiği ve bu ezici takımın derin haddelemede alternatif olarak kullanılabileceği tespit edilmiştir.

Project Number

BTÜBAP-2022-YL-05

References

  • [1]. Wandra, R., Prakash, C., Singh, S. 2022. Experimental investigation and optimization of surface roughness of β-Phase titanium alloy by ball burnishing assisted electrical discharge cladding for implant applications. Materials Today: Proceedings; 48, 975-980, doi: 10.1016/j.matpr.2021.06.070.
  • [2]. Kinner-Becker, T., Zmich, R., Sölter, J., Meyer, D. 2021. Combined laser and deep rolling process as a means to study thermo-mechanical processes. Procedia CIRP; 102, 369-374, doi: 10.1016/j.procir.2021.09.063.
  • [3]. Prabhu, P. R., Kulkarni, S. M., Sharma, S. S. 2011. An experimental investigation on the effect of deep cold rolling parameters on surface roughness and hardness of AISI 4140 steel. World Academy of Science, Engineering and Technology; 60, 1594-1598.
  • [4]. Başak, H., Sönmez, F., 2015. In Burnishing Process, Inspectation of The Burnishing Apparaus (Ball, Roller, Twıst Roller) Effects on Surface Roughness and Surface Hardness, Journal of Polytechnic; 18(3), 125-132, doi: 10.2339/2015.18.3, 125-132.
  • [5]. Mendi, F., Takım tezgâhları teori ve hesapları, ISBN:975-06008-0-3, Ankara, 1996.
  • [6]. Özkan, S. 2006. Sürtünme karıştırma kaynağı ile birleştirilen parçalarda haddeleme (burnishing) ile yüzeylerin işlenmesi, haddelemenin yüzey pürüzlülüğüne ve sertleşmeye etkisinin incelenmesi. M.S. thesis, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [7]. Akyüz, M. 2020. Bilyeli haddeleme yönteminde işlem parametrelerinin Al7075-T6 alüminyum alaşımının mekanik özellikleri üzerindeki etkilerinin deneysel olarak araştırılması. M.S. thesis, Fen Bilimleri Enstitüsü Fırat Üniversitesi, Elazığ.
  • [8]. Hassan A. D., Maqableh A. M., 2000. The effects of initial burnishing parameters on non-ferrous components. Journal of Materials Processing Technology; 102(1-3), 115-121, doi: 10.1016/S0924-0136(00)00464-7.
  • [9]. Luo H., Wang L., Zhang C. 2011. Study on the aluminum alloy burnishing processing and the existence of the outstripping phenomenon. Journal of Materials Processing Technology; 116, 88-90, doi: 10.1016/S0924-0136(01)00847-0.
  • [10]. Hassan, A. M. 1997. The effects of ball-and roller-burnishing on the surface roughness and hardness of some non-ferrous metals. Journal of materials processing technology; 72(3), 385-391, doi: 10.1016/S0924-0136(97)00199-4.
  • [11]. Yu X., Wang L. 1999. Effect of various parameters on the surface roughness of an aluminium alloy burnished with a spherical surfaced polycrystalline diamond tool. International Journal of Machine Tools & Manufacture; 39(3), 459–469, doi: 10.1016/S0890-6955(98)00033-9.
  • [12]. El-Axir, M.H., El-Khabeery, M.M. 2003. Influence of orthogonal burnishing parameters on surface characteristics for various materials. Journal of Materials Processing Technology; 132, 82–89, doi: 10.1016/S0924-0136(02)00269-8.
  • [13]. Zhuang, W., Liu, Q., Djugum, R., Sharp, P.K., Paradowska, A. 2014. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy. Applied Surface. Science; 320, 558–562, doi: 10.1016/ j.apsusc.2014.09.139.
  • [14]. Majzoobi, G.H., Jouneghani, F.Z., Khademi, E. 2016. Experimental and numerical studies on the effect of deep rolling on bending fretting fatigue resistance of Al7075. Int. J. Adv. Manuf. Technol; 82, 2137–2148, doi: 10.1007/s00170-015-7542-z.
  • [15]. Khabeery M. M., Axir M. H., 2001. Experimental techniques for studying the effects of milling roller-burnishing parameters on surface integrity. International Journal of Machine Tools & Manufacture; 41(12), 1705–1719, doi: 10.1016/S0890-6955(01)00036-0.
  • [16]. Basak H., Goktas H.H. 2009. Burnishing process on al-alloy and optimization of surface roughness and surface hardness by fuzzy logic. Materials and Design; 30, 1275–1281, doi: 10.1016/j.matdes.2008. 06.063.
  • [17]. Tadic B., Todorovic M. P., Luzanin O., Miljanic D., Jeremic M. B., Bogdanovic B., Vukelic D. 2013. Using specially designed high-stiffness burnishing tool to achieve high-quality surface finish. The International Journal of Advanced Manufacturing Technology; 67, 601–611, doi: 10.1007/s00170-012-4508-2.
  • [18]. Akkurt, A., Ovalı, İ. 2009. The effects of burnishing and conventional finishing processes on surface roughness and roundness of the Al 6061 aluminum parts. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi; 15(3), 371-382.
  • [19]. Akkurt, A. Delik yüzeylerine uygulanan yüzey iyileştirme işlemlerinin alüminyum alaşımı malzemeler üzerinde araştırılması, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Turkey, 2009.
  • [20]. Başak, H. 2015. Haddeleme (Galetaj) ile 5083 Al-Mg malzeme yüzeyinin işlenmesi, haddeleme parametrelerinin yüzey pürüzlülüğü ve yüzey sertliğine etkilerinin incelenmesi. GU J Sci Part:C; 3(2), 471-476.
  • [21]. Malyer, E. 2018. Examining the residual stress on the burnished AA7075-T6 aluminum alloy. Journal of Polytechnic; 21(3), 565-573, doi: 10.2339/politeknik.389592.
  • [22]. Maiß, O., Röttger, K. 2022. Monitoring the surface quality for various deep rolling processes–limits and experimental results. Procedia CIRP; 108, 857-862, doi. 10.1016/j.procir.2022.05.199.
  • [23]. Oevermann, T., Wegener, T., Liehr, A., Hübner, L., Niendorf, T. 2021. Evolution of residual stress, microstructure and cyclic performance of the equiatomic high-entropy alloy CoCrFeMnNi after deep Rolling. International Journal of Fatigue; 153, 106513.
  • [24]. Martins, A. M. Leal, C. A. Campidelli, A. F. Abrao, A. M.; Rodrigues, P. C. Magalhães, F. C. Meyer, K. 2022. Assessment of the temperature distribution in deep rolling of hardened AISI 4140 steel. Journal of Manufacturing Processes; 73, 686-694, doi. 10.1016/j.jmapro.2021.11.052.
  • [25]. Bogachev, I., Knowles, K. M., Gibson, G. J. 2021. Deep cold rolling of single crystal nickel-based superalloy CMSX-4. Materialia; 20, 101240, 2021.
  • [26]. Hettig, M., Meyer, D. 2020. Sequential multistage deep rolling under varied contact conditions. Procedia CIRP; 87, 291-296, doi. 10.1016/j.procir.2020. 02.027.
  • [27]. Basak, H., Ozkan, M., Toktas, I. 2019. Experimental research and ANN modeling on the impact of the ball burnishing process on the mechanical properties of 5083 Al-Mg material. Kovové materiály-Metallic Materials; 57(1), 61-74, doi. 10.4149/km 2019_1_61.
  • [28]. Delgado, P., Cuesta, I. I., Alegre, J. M., Díaz, A. 2016. State of the art of Deep Rolling. Precision Engineering; 46, 1-10, doi. 10.1016/j.precisioneng.2016. 05.001.
  • [29]. Sönmez, F., Başak, H., Baday, Ş. 2016. Haddeleme işleminin yüzey yanit yöntemi ile analizi. Gazi University Journal of Science Part C: Design and Technology, 4(4), 275-283.
  • [30]. Adıyaman, O. 2024. Investigation on the Application of Worn Cutting Tool Inserts as Burnishing Tools. Strojniški vestnik - Journal of Mechanical Engineering, 70(1-2), 92-102. doi:http://dx.doi.org/10.5545/sv-jme.2023.781
  • [31]. Blasón, S., Rodríguez, C., Belzunce, J., Suárez, C. 2017. Fatigue behaviour improvement on notched specimens of two different steels through deep rolling, a surface cold treatment. Theoretical and Applied Fracture Mechanics; 92, 223-228, doi. 10.1016/j.tafmec.2017.08.003.
  • [32]. Prabhu, P. R., Kulkarni, S. M., Sharma, S. 2020. Multi-response optimization of the turn-assisted deep cold rolling process parameters for enhanced surface characteristics and residual stress of AISI 4140 steel shafts”, Journal of Materials Research and Technology; 9,(5), 11402-11423, doi: 10.1016/j.jmrt.2020.08.025
  • [33]. El-Axir, M. H., Othman, O. M., & Abodiena, A. M. 2008. Improvements in out-of-roundness and microhardness of inner surfaces by internal ball burnishing process. Journal of materials processing technology, 196(1-3), 120-128. doi: 0.1016/j.jmatprotec.2007.05.028
  • [34]. Aydın, F., Adıyaman, O. 2023. Experimental ınvestigation of new type ınsert in deep rolling of al6061-t6 material. Rahva Journal of Technical and Social Studies; 3(1), 58-72.
  • [35]. Aydın, F., Adıyaman, O. 2023. Yeni tip ınsert uç ile Al6061 malzemeye bilyeli parlatma yöntemi uygulanması ve yüzey özelliklerinin incelenmesi. 2nd International Rahva Technical and Social Researches Congress, Bitlis, Turkey, 171-172.
  • [36]. Yüce Teknik, 2023, https://www.yuceteknik.com/ Mekanik-Kalip-Yaylari-Yesil-Yay,PR-1779.html (accessed: 20/08/2023).
  • [37]. Technical Data Sheet, 2024, https://www.skf.com/binaries/pub12/Images/LubriFluid_TD_US_tcm_12-158093.pdf, (accessed :06/03/2024)
  • [38]. Lee SH. 2003. Optimization of cutting parameters for burr minimization in face-milling operations. Int J Prod Res 41 (3):497 doi:10.1080/0020754021000042382.
  • [39]. Lin TR (2002) Optimization technique for face milling stainless steel with multiple performance characteristics. Int J Adv Manuf Technol 19:330 doi:10.1007/s001700200021
  • [40]. Ross PJ (1996) Taguchi techniques for quality engineering, 2nd edn. McGraw-Hill, New York
  • [41]. El-Tayeb, N. S. M., Low K. O., Brevern P. V. 2007. Influence of roller burnishing contact width and burnishing orientation on surface quality and tribological behaviour of Aluminium 6061. Journal of materials processing technology; 186(3), 272-278, doi: 10.1016/j.jmatprotec.2006.12.044.
  • [42]. Egea A.J.S., Rodríguez A., Celentano D., A.Calleja, Lacalle L.N. 2019. Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy. Surface & Coatings Technology; 367, 327–335, doi. 10.1016/j.surfcoat.2019. 04.010.
  • [43]. Koçak, H. 2020. Improving the surface properties of Al 6013 and MS 58 materials by ball burnishing process for hole. GU J Sci, Part C; 8(4), 972-980, doi: 10.29109/gujsc.821576.
  • [44]. Martins, A. M., Oliveira, D. A. D., de Castro Magalhães, F., & Abrão, A. M. (2023). Relationship between surface characteristics and the fatigue life of deep rolled AISI 4140 steel. The International Journal of Advanced Manufacturing Technology, 129(3), 1127-1143. doi: 10.1007/s00170-023-12332-x.
  • [45]. Shetty, R., Rao, S. S., & Gaitonde, V. N. 2017. Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process. Journal of Materials Research and Technology, 6(1), 13-32. doi: 10.1016/j.jmrt.2016.03.007.
  • [46]. Wang, Z., Xiao, Z., Huang, C., Wen, L., & Zhang, W. 2017. Influence of ultrasonic surface rolling on microstructure and wear behavior of selective laser melted Ti-6Al-4V alloy. Materials, 10(10), 1203, doi: 10.3390/ma10101203.
  • [47]. Attabi, S., Himour, A., Laouar, L., & Motallebzadeh, A. 2021. Mechanical and wear behaviors of 316L stainless steel after ball burnishing treatment. Journal of Materials Research and Technology, 15, 3255-3267. doi: 10.1016/j.jmrt.2021.09.081.
  • [48]. Herbster, M., Harnisch, K., Haberland, E., Kriegel, P., Döbberthin, C., Heyn, A., Halle, T. 2021. Effect of deep rolling on subsurface conditions of CoCr28Mo6 wrought alloy to improve the wear resistance of endoprostheses. Journal of the Mechanical Behavior of Biomedical Materials; 118, 104398, doi: 10.1016/j.jmbbm.2021.104398.
  • [49]. Chen, M., He, J., Wang, M., Li, J., Xing, S., Gui, K., Liu, Q. 2022. Effects of deep cold rolling on the evolution of microstructure, microtexture, and mechanical properties of 2507 duplex stainless steel. Materials Science and Engineering: A; 845, 143224. doi: 10.1016/j.msea.2022.143224.
There are 49 citations in total.

Details

Primary Language English
Subjects Manufacturing Processes and Technologies (Excl. Textiles)
Journal Section Articles
Authors

Oktay Adıyaman 0000-0002-2674-3836

Feyza Aydın 0000-0002-2836-1030

Project Number BTÜBAP-2022-YL-05
Publication Date March 27, 2024
Submission Date December 17, 2023
Acceptance Date March 15, 2024
Published in Issue Year 2024 Volume: 20 Issue: 1

Cite

APA Adıyaman, O., & Aydın, F. (2024). Deep Rolling of Al6061-T6 Material and Performance Evaluation with New Type Designed WNMG Formed Rolling Tool. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(1), 29-40. https://doi.org/10.18466/cbayarfbe.1405976
AMA Adıyaman O, Aydın F. Deep Rolling of Al6061-T6 Material and Performance Evaluation with New Type Designed WNMG Formed Rolling Tool. CBUJOS. March 2024;20(1):29-40. doi:10.18466/cbayarfbe.1405976
Chicago Adıyaman, Oktay, and Feyza Aydın. “Deep Rolling of Al6061-T6 Material and Performance Evaluation With New Type Designed WNMG Formed Rolling Tool”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, no. 1 (March 2024): 29-40. https://doi.org/10.18466/cbayarfbe.1405976.
EndNote Adıyaman O, Aydın F (March 1, 2024) Deep Rolling of Al6061-T6 Material and Performance Evaluation with New Type Designed WNMG Formed Rolling Tool. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 1 29–40.
IEEE O. Adıyaman and F. Aydın, “Deep Rolling of Al6061-T6 Material and Performance Evaluation with New Type Designed WNMG Formed Rolling Tool”, CBUJOS, vol. 20, no. 1, pp. 29–40, 2024, doi: 10.18466/cbayarfbe.1405976.
ISNAD Adıyaman, Oktay - Aydın, Feyza. “Deep Rolling of Al6061-T6 Material and Performance Evaluation With New Type Designed WNMG Formed Rolling Tool”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/1 (March 2024), 29-40. https://doi.org/10.18466/cbayarfbe.1405976.
JAMA Adıyaman O, Aydın F. Deep Rolling of Al6061-T6 Material and Performance Evaluation with New Type Designed WNMG Formed Rolling Tool. CBUJOS. 2024;20:29–40.
MLA Adıyaman, Oktay and Feyza Aydın. “Deep Rolling of Al6061-T6 Material and Performance Evaluation With New Type Designed WNMG Formed Rolling Tool”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 20, no. 1, 2024, pp. 29-40, doi:10.18466/cbayarfbe.1405976.
Vancouver Adıyaman O, Aydın F. Deep Rolling of Al6061-T6 Material and Performance Evaluation with New Type Designed WNMG Formed Rolling Tool. CBUJOS. 2024;20(1):29-40.