Research Article
BibTex RIS Cite

Propolis: as an Additive in Bacterial Cellulose Production

Year 2024, Volume: 20 Issue: 3, 10 - 18, 30.09.2024
https://doi.org/10.18466/cbayarfbe.1490668

Abstract

This study investigates the effect of propolis supplementation on bacterial cellulose (BC) production efficiency with Komagataeibacter species. Compared to production in Hestrin-Schramm medium, the addition of propolis increased BC production with K. intermedius, K. maltaceti, and K. nataicola by 1.31-fold, 2.09-fold, and 1.43-fold, and optimal propolis concentration were determined to be 25%, 20%, and 30%, yielding 7.15 g/L BC, 5.4 g/L BC, and 4.15 g/L BC, respectively. K. intermedius - K. maltaceti consortia, increased production by 1.57-fold compared to K. intermedius and 2.07-fold compared to K. maltaceti monocultures. Increasing the volume of the cultivation vessel also increased BC production by 1.08-1.59-fold. Agitation induced production efficiency by 1.01-1.18-fold; however, obtained BC exhibited irregular shapes. BC obtained from K. maltaceti exhibited the highest Water Holding Capacity (WHC) and Moisture Content Retention (MCR) as 97.63% and 33.22 g/g. Characteristic BC bands and nanofibrillar structure of BC were observed with Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and Fouirer Transform Infrared (FT-IR) Spectrometer.

Ethical Statement

-

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1]. Katiyar, D. 2023. Propolis: A natural biomaterial. Materials Today: Proceedings (In press).
  • [2]. Eslami, M, Zaretabar, A, Dawood, MA, Mohammadzadeh, S, Shahali, Y, Ahmadifar, E, Sheikhzadeh, N, Moghadam, MS, Hoseinifar, SH, Van Doan, H. 2022. Can dietary ethanolic extract of propolis alter growth performance, digestive enzyme activity, antioxidant, and immune indices in juvenile beluga sturgeon (Huso huso)?. Aquaculture; 552: 737939.
  • [3]. Sharaf, SM, Al-Mofty, SED, El-Sayed, ESM, Omar, A, Dena, ASA, El-Sherbiny, IM. 2021. Deacetylated cellulose acetate nanofibrous dressing loaded with chitosan/propolis nanoparticles for the effective treatment of burn wounds. International Journal of Biological Macromolecules; 193: 2029-2037.
  • [4]. Farag, MR, Abdelnour, SA, Patra, AK, Dhama, K, Dawood, MA, Elnesr, SS, Alagawany, M. 2021. Propolis: Properties and composition, health benefits and applications in fish nutrition. Fish & Shellfish Immunology; 115: 179-188.
  • [5]. Amorim, JD, Nascimento, HA, Silva Junior, CJG, Medeiros, AD, Silva, IDL, Costa, AFS, Vnhas, GM, Sarubbo, LA. 2022. Obtainment of bacterial cellulose with added propolis extract for cosmetic applications. Polymer Engineering & Science; 62 (2): 565-575.
  • [6]. Ceylan, O, Karakus, H, Cicek, H. 2021. Design and in vitro antibiofilm activity of propolis diffusion‐controlled biopolymers. Biotechnology and Applied Biochemistry; 68 (4): 789-800.
  • [7]. Salama, A, El-Sakhawy, M. 2024. Polysaccharides/propolis composite as promising materials with biomedical and packaging applications: A review. Biomass Conversion and Biorefinery; 14 (4): 4555-4565.
  • [8]. Blanco Parte, FG, Santoso, SP, Chou, CC, Verma, V, Wang, HT, Ismadji, S, Cheng, KC 2020. Current progress on the production, modification, and applications of bacterial cellulose. Critical reviews in biotechnology; 40 (3): 397-414.
  • [9]. Lin, SP, Singajaya, S, Lo, TY, Santoso, SP, Hsu, HY, Cheng, KC 2023. Evaluation of porous bacterial cellulose produced from foam templating with different additives and its application in 3D cell culture. International Journal of Biological Macromolecules; 234: 123680.
  • [10]. Hu, H, Catchmark, JM, Demirci, A. 2022. Effects of pullulan additive and co-culture of Aureobasidium pullulans on bacterial cellulose produced by Komagataeibacter hansenii. Bioprocess and biosystems engineering; 45 (3): 573-587.
  • [11]. Gilbert, C, Tang, TC, Ott, W, Dorr, BA, Shaw, WM, Sun, GL, Lu, TK, Ellis, T. 2021. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nature materials; 20 (5): 691-700.
  • [12]. Nascimento, HA, Amorim, JD, M. Filho, LED, Costa, AFS, Sarubbo, LA, Napoleão, DC, Maria Vinhas, G. 2022. Production of bacterial cellulose with antioxidant additive from grape residue with promising cosmetic applications. Polymer Engineering & Science; 62 (9): 2826-2839.
  • [13]. Wu Y, Huang, TY, Li, ZX, Huang, ZY, Lu, YQ, Gao, J, Hu, Y, Huang, C. 2021. In-situ fermentation with gellan gum adding to produce bacterial cellulose from traditional Chinese medicinal herb residues hydrolysate. Carbohydrate Polymers; 270: 118350.
  • [14]. Avcioglu, NH, Birben, M, Bilkay, IS. 2021. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium. Process Biochemistry; 108: 60-68.
  • [15]. Avcioglu, NH. 2024. Eco-friendly Production of Bacterial Cellulose with Komagataeibacter intermedius Strain by Using Jasminum sambac and Camellia sinensis Plants. Journal of Polymers and the Environment; 32 (1): 460-477.
  • [16]. Szymańska, M, Hoppe, J, Dutkiewicz, M, Sobolewski, P, Palacz, M, Janus, E, Zielińska, B, Drozd, R. 2022. Silicone polyether surfactant enhances bacterial cellulose synthesis and water holding capacity. International Journal of Biological Macromolecules; 208: 642-653.
  • [17]. Campano, C, Balea, A, Blanco, A, Negro, C. 2016. Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose; 23: 57-91.
  • [18]. Andriani, D, Apriyana, AY, Karina, M.2020). The optimization of bacterial cellulose production and its applications: a review. Cellulose; 27 (12): 6747-6766.
  • [19]. Gao, G, Fan, H, Zhang, Y, Cao, Y, Li, T, Qiao, W, Wu, M, Ma, T, Li, G. 2021. Production of nisin-containing bacterial cellulose nanomaterials with antimicrobial properties through co-culturing Enterobacter sp. FY-07 and Lactococcus lactis N8. Carbohydrate Polymers; 251: 117131.
  • [20]. Brugnoli, M, Mazzini, I, La China, S, De Vero, L, Gullo, M. 2023. A Microbial Co-Culturing System for Producing Cellulose-Hyaluronic Acid Composites. Microorganisms; 11 (6): 1504.
  • [21]. Cheng, KC, Catchmark, JM, Demirci, A. 2009. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. Journal of biological engineering; 3: 1-10.
  • [22]. Sharma, P, Sharma, R, Ahuja, S, Yadav, A, Arora, S, Aggarwal, NK. 2023. Enhancement of bacterial cellulose production by ethanol and lactic acid by using Gluconacetobacter kombuchae. Preparative Biochemistry & Biotechnology; 1-9.
  • [23]. Zhou, J, Sun, J, Ullah, M, Wang, Q, Zhang, Y, Cao, G, Chen, L, Ullah, MW, Sun, S. 2023. Polyethylene terephthalate hydrolysate increased bacterial cellulose production. Carbohydrate Polymers; 300: 120301.
  • [24]. Brown, JL, Perisin, MA, Swift, CL, Benyamin, M, Liu, S, Singan, V, Zhang, Y, Savage, E, Pennacchioc, C, Grigoriev, IV, O'Malley, MA. 2022. Co cultivation of anaerobic fungi with Clostridium acetobutylicum bolsters butyrate and butanol production from cellulose and lignocellulose. Journal of Industrial Microbiology and Biotechnology; 49 (6): kuac024.
  • [25]. Nazarova, NB, Liyaskina, EV, Revin, VV. 2023. Production of Bacterial Cellulose by Cocultivation of Komagataeibacter sucrofermentans with Producers of Dextran Leuconostoc mesenteroides and Xanthan Xanthomonas campestris. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry; 17 (2): 101-109.
  • [26]. Avcioglu, NH, Sevim, C, Alver, E., Donmez, Seyis Bilkay, I. 2021. Comparison of bacterial cellulose production by Komagataeibacter intermedius strain using Lavandula angustifolia, Rosa canina and Tilia cordata plants as low-cost media. Cellulose Chemistry and Technology; 55 (9-10): 1029-1041.
  • [27]. Szymańska, M, Hoppe, J, Dutkiewicz, M, Sobolewski, P, Palacz, M, Janus, E, Zielińska, B, Drozd, R. 2022. Silicone polyether surfactant enhances bacterial cellulose synthesis and water holding capacity, International Journal of Biological Macromolecules; 208: 642-653.
  • [28]. Gorgieva, S, Trček, J. 2019. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials; 9 (10): 1352.
  • [29]. Moniri, M, Boroumand Moghaddam, A, Azizi, S, Abdul Rahim, R, Bin Ariff, A, Zuhainis Saad, W, Navaderi, M, Mohamad, R. 2017. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials; 7 (9): 257.
  • [30]. Urbina, L, Corcuera, MÁ, Gabilondo, N, Eceiza, A, Retegi, A. 2021. A review of bacterial cellulose: sustainable production from agricultural waste and applications in various fields. Cellulose; 28 (13): 8229-8253.
  • [31]. Nguyen, QD, Nguyen, NN. 2022. Effects of different hydrocolloids on the production of bacterial cellulose by Acetobacter xylinum using Hestrin–Schramm medium under anaerobic condition. Bioresource Technology Reports; 17: 100878.
  • [32]. Sapie, SR, Kamari, A, Jumadi, J. (2023, March). A brief review of propolis as an additive in biopolymer matrix films for food packaging. In AIP Conference Proceedings (Vol. 2556, No. 1). AIP Publishing.
  • [33]. Boisard, S, Le Ray, AM, Gatto, J, Aumond, MC, Blanchard, P, Derbre, S, Flurin, C, Richomme, P. 2014. Chemical Composition, Antioxidant and Anti-AGEs Activities of a French Poplar Type Propolis. J Agric Food Chem; 62:1344−1351.
  • [34]. Picolotto, A, Pergher, D, Pereira, GP, Machado, KG, da Silva Barud, H, Roesch-Ely, M, Gonzalez, MH, Tasso, L, Figueiredo, JG, Moura, S. 2019. Bacterial cellulose membrane associated with red propolis as phytomodulator: Improved healing effects in experimental models of diabetes mellitus. Biomedicine & Pharmacotherapy; 112: 108640.
  • [35]. De Carli, C, Aylanc, V, Mouffok, KM, Santamaria-Echart, A, Barreiro, F, Tomás, A, Pereira, C, Rodrigues, P, Vilas-Boas, M, Falcão, SI. 2022. Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. International Journal of Biological Macromolecules; 213: 486-497.
  • [36]. Lahiri, D, Nag, M, Dutta, B, Dey, A, Sarkar, T, Pati, S, Edinur, HA, Kari, ZA, Noor, NHM, Ray, RR. 2021. Bacterial cellulose: Production, characterization, and application as antimicrobial agent. International journal of molecular sciences; 22 (23): 12984.
  • [37]. Singhania, RR, Patel, AK, Tseng, YS, Kumar, V, Chen, CW, Haldar, D, Saini, JK, Dong, CD. 2022. Developments in bioprocess for bacterial cellulose production. Bioresource Technology; 344: 126343.
  • [38]. Abdelraof M, El Saied H, Hasanin MS. 2022. Green Immobilization of Glucanobacter xylinum onto natural polymers to sustainable bacterial cellulose production. Waste Biomass Valor; 13 (4): 2053–69.
  • [39]. Azmi, SNNS, Fabli, SNNFM, Aris, FAF, Samsu, ZA, Asnawi, ASFM, Yusof, YM, Ariffin, H, Abdullah, SSS. 2021. Fresh oil palm frond juice as a novel and alternative fermentation medium for bacterial cellulose production. Materials Today: Proceed; 42: 101-106.
  • [40]. Hsieh, JT, Wang, MJ, Lai, JT, Liu, HS. 2016. A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. Journal of the Taiwan Institute of Chemical Engineers; 63: 46–51.
  • [41]. Fernandes, IDAA, Pedro, AC, Ribeiro, VR, Bortolini, DG, Ozaki, MSC, Maciel, GM, Haminiuk, CWI. 2020. Bacterial cellulose: From production optimization to new applications. International Journal of Biological Macromolecules; 164: 2598-2611.
  • [42]. Sperotto, G, Stasiak, LG, Godoi, JPMG, Gabiatti, NC, De Souza, SS. 2021. A review of culture media for bacterial cellulose production: complex, chemically defined and minimal media modulations. Cellulose; 28: 2649-2673.
  • [43]. Andriani, D, Apriyana, AY, Karina, M. 2020. The optimization of bacterial cellulose production and its applications: a review. Cellulose; 27 (12): 6747-6766.
  • [44]. Jiang, H, Song, Z, Hao, Y, Hu, X, Lin, X, Liu, S, Li, C. 2023. Effect of co-culture of Komagataeibacter nataicola and selected Lactobacillus fermentum on the production and characterization of bacterial cellulose. LWT; 173: 114224.
  • [45]. Li, W, Huang, X, Liu, H, Lian, H, Xu, B, Zhang, W, Sun, X, Wang, W, Jia, S, Zhong, C. 2023. Improvement in bacterial cellulose production by co-culturing Bacillus cereus and Komagataeibacter xylinus. Carbohydrate Polymers; 313: 120892.
  • [46]. Tapias, YAR, Di Monte, MV, Peltzer, MA, Salvay, AG. 2022. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chemistry; 372: 131346.
Year 2024, Volume: 20 Issue: 3, 10 - 18, 30.09.2024
https://doi.org/10.18466/cbayarfbe.1490668

Abstract

Project Number

-

References

  • [1]. Katiyar, D. 2023. Propolis: A natural biomaterial. Materials Today: Proceedings (In press).
  • [2]. Eslami, M, Zaretabar, A, Dawood, MA, Mohammadzadeh, S, Shahali, Y, Ahmadifar, E, Sheikhzadeh, N, Moghadam, MS, Hoseinifar, SH, Van Doan, H. 2022. Can dietary ethanolic extract of propolis alter growth performance, digestive enzyme activity, antioxidant, and immune indices in juvenile beluga sturgeon (Huso huso)?. Aquaculture; 552: 737939.
  • [3]. Sharaf, SM, Al-Mofty, SED, El-Sayed, ESM, Omar, A, Dena, ASA, El-Sherbiny, IM. 2021. Deacetylated cellulose acetate nanofibrous dressing loaded with chitosan/propolis nanoparticles for the effective treatment of burn wounds. International Journal of Biological Macromolecules; 193: 2029-2037.
  • [4]. Farag, MR, Abdelnour, SA, Patra, AK, Dhama, K, Dawood, MA, Elnesr, SS, Alagawany, M. 2021. Propolis: Properties and composition, health benefits and applications in fish nutrition. Fish & Shellfish Immunology; 115: 179-188.
  • [5]. Amorim, JD, Nascimento, HA, Silva Junior, CJG, Medeiros, AD, Silva, IDL, Costa, AFS, Vnhas, GM, Sarubbo, LA. 2022. Obtainment of bacterial cellulose with added propolis extract for cosmetic applications. Polymer Engineering & Science; 62 (2): 565-575.
  • [6]. Ceylan, O, Karakus, H, Cicek, H. 2021. Design and in vitro antibiofilm activity of propolis diffusion‐controlled biopolymers. Biotechnology and Applied Biochemistry; 68 (4): 789-800.
  • [7]. Salama, A, El-Sakhawy, M. 2024. Polysaccharides/propolis composite as promising materials with biomedical and packaging applications: A review. Biomass Conversion and Biorefinery; 14 (4): 4555-4565.
  • [8]. Blanco Parte, FG, Santoso, SP, Chou, CC, Verma, V, Wang, HT, Ismadji, S, Cheng, KC 2020. Current progress on the production, modification, and applications of bacterial cellulose. Critical reviews in biotechnology; 40 (3): 397-414.
  • [9]. Lin, SP, Singajaya, S, Lo, TY, Santoso, SP, Hsu, HY, Cheng, KC 2023. Evaluation of porous bacterial cellulose produced from foam templating with different additives and its application in 3D cell culture. International Journal of Biological Macromolecules; 234: 123680.
  • [10]. Hu, H, Catchmark, JM, Demirci, A. 2022. Effects of pullulan additive and co-culture of Aureobasidium pullulans on bacterial cellulose produced by Komagataeibacter hansenii. Bioprocess and biosystems engineering; 45 (3): 573-587.
  • [11]. Gilbert, C, Tang, TC, Ott, W, Dorr, BA, Shaw, WM, Sun, GL, Lu, TK, Ellis, T. 2021. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nature materials; 20 (5): 691-700.
  • [12]. Nascimento, HA, Amorim, JD, M. Filho, LED, Costa, AFS, Sarubbo, LA, Napoleão, DC, Maria Vinhas, G. 2022. Production of bacterial cellulose with antioxidant additive from grape residue with promising cosmetic applications. Polymer Engineering & Science; 62 (9): 2826-2839.
  • [13]. Wu Y, Huang, TY, Li, ZX, Huang, ZY, Lu, YQ, Gao, J, Hu, Y, Huang, C. 2021. In-situ fermentation with gellan gum adding to produce bacterial cellulose from traditional Chinese medicinal herb residues hydrolysate. Carbohydrate Polymers; 270: 118350.
  • [14]. Avcioglu, NH, Birben, M, Bilkay, IS. 2021. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium. Process Biochemistry; 108: 60-68.
  • [15]. Avcioglu, NH. 2024. Eco-friendly Production of Bacterial Cellulose with Komagataeibacter intermedius Strain by Using Jasminum sambac and Camellia sinensis Plants. Journal of Polymers and the Environment; 32 (1): 460-477.
  • [16]. Szymańska, M, Hoppe, J, Dutkiewicz, M, Sobolewski, P, Palacz, M, Janus, E, Zielińska, B, Drozd, R. 2022. Silicone polyether surfactant enhances bacterial cellulose synthesis and water holding capacity. International Journal of Biological Macromolecules; 208: 642-653.
  • [17]. Campano, C, Balea, A, Blanco, A, Negro, C. 2016. Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose; 23: 57-91.
  • [18]. Andriani, D, Apriyana, AY, Karina, M.2020). The optimization of bacterial cellulose production and its applications: a review. Cellulose; 27 (12): 6747-6766.
  • [19]. Gao, G, Fan, H, Zhang, Y, Cao, Y, Li, T, Qiao, W, Wu, M, Ma, T, Li, G. 2021. Production of nisin-containing bacterial cellulose nanomaterials with antimicrobial properties through co-culturing Enterobacter sp. FY-07 and Lactococcus lactis N8. Carbohydrate Polymers; 251: 117131.
  • [20]. Brugnoli, M, Mazzini, I, La China, S, De Vero, L, Gullo, M. 2023. A Microbial Co-Culturing System for Producing Cellulose-Hyaluronic Acid Composites. Microorganisms; 11 (6): 1504.
  • [21]. Cheng, KC, Catchmark, JM, Demirci, A. 2009. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. Journal of biological engineering; 3: 1-10.
  • [22]. Sharma, P, Sharma, R, Ahuja, S, Yadav, A, Arora, S, Aggarwal, NK. 2023. Enhancement of bacterial cellulose production by ethanol and lactic acid by using Gluconacetobacter kombuchae. Preparative Biochemistry & Biotechnology; 1-9.
  • [23]. Zhou, J, Sun, J, Ullah, M, Wang, Q, Zhang, Y, Cao, G, Chen, L, Ullah, MW, Sun, S. 2023. Polyethylene terephthalate hydrolysate increased bacterial cellulose production. Carbohydrate Polymers; 300: 120301.
  • [24]. Brown, JL, Perisin, MA, Swift, CL, Benyamin, M, Liu, S, Singan, V, Zhang, Y, Savage, E, Pennacchioc, C, Grigoriev, IV, O'Malley, MA. 2022. Co cultivation of anaerobic fungi with Clostridium acetobutylicum bolsters butyrate and butanol production from cellulose and lignocellulose. Journal of Industrial Microbiology and Biotechnology; 49 (6): kuac024.
  • [25]. Nazarova, NB, Liyaskina, EV, Revin, VV. 2023. Production of Bacterial Cellulose by Cocultivation of Komagataeibacter sucrofermentans with Producers of Dextran Leuconostoc mesenteroides and Xanthan Xanthomonas campestris. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry; 17 (2): 101-109.
  • [26]. Avcioglu, NH, Sevim, C, Alver, E., Donmez, Seyis Bilkay, I. 2021. Comparison of bacterial cellulose production by Komagataeibacter intermedius strain using Lavandula angustifolia, Rosa canina and Tilia cordata plants as low-cost media. Cellulose Chemistry and Technology; 55 (9-10): 1029-1041.
  • [27]. Szymańska, M, Hoppe, J, Dutkiewicz, M, Sobolewski, P, Palacz, M, Janus, E, Zielińska, B, Drozd, R. 2022. Silicone polyether surfactant enhances bacterial cellulose synthesis and water holding capacity, International Journal of Biological Macromolecules; 208: 642-653.
  • [28]. Gorgieva, S, Trček, J. 2019. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials; 9 (10): 1352.
  • [29]. Moniri, M, Boroumand Moghaddam, A, Azizi, S, Abdul Rahim, R, Bin Ariff, A, Zuhainis Saad, W, Navaderi, M, Mohamad, R. 2017. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials; 7 (9): 257.
  • [30]. Urbina, L, Corcuera, MÁ, Gabilondo, N, Eceiza, A, Retegi, A. 2021. A review of bacterial cellulose: sustainable production from agricultural waste and applications in various fields. Cellulose; 28 (13): 8229-8253.
  • [31]. Nguyen, QD, Nguyen, NN. 2022. Effects of different hydrocolloids on the production of bacterial cellulose by Acetobacter xylinum using Hestrin–Schramm medium under anaerobic condition. Bioresource Technology Reports; 17: 100878.
  • [32]. Sapie, SR, Kamari, A, Jumadi, J. (2023, March). A brief review of propolis as an additive in biopolymer matrix films for food packaging. In AIP Conference Proceedings (Vol. 2556, No. 1). AIP Publishing.
  • [33]. Boisard, S, Le Ray, AM, Gatto, J, Aumond, MC, Blanchard, P, Derbre, S, Flurin, C, Richomme, P. 2014. Chemical Composition, Antioxidant and Anti-AGEs Activities of a French Poplar Type Propolis. J Agric Food Chem; 62:1344−1351.
  • [34]. Picolotto, A, Pergher, D, Pereira, GP, Machado, KG, da Silva Barud, H, Roesch-Ely, M, Gonzalez, MH, Tasso, L, Figueiredo, JG, Moura, S. 2019. Bacterial cellulose membrane associated with red propolis as phytomodulator: Improved healing effects in experimental models of diabetes mellitus. Biomedicine & Pharmacotherapy; 112: 108640.
  • [35]. De Carli, C, Aylanc, V, Mouffok, KM, Santamaria-Echart, A, Barreiro, F, Tomás, A, Pereira, C, Rodrigues, P, Vilas-Boas, M, Falcão, SI. 2022. Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. International Journal of Biological Macromolecules; 213: 486-497.
  • [36]. Lahiri, D, Nag, M, Dutta, B, Dey, A, Sarkar, T, Pati, S, Edinur, HA, Kari, ZA, Noor, NHM, Ray, RR. 2021. Bacterial cellulose: Production, characterization, and application as antimicrobial agent. International journal of molecular sciences; 22 (23): 12984.
  • [37]. Singhania, RR, Patel, AK, Tseng, YS, Kumar, V, Chen, CW, Haldar, D, Saini, JK, Dong, CD. 2022. Developments in bioprocess for bacterial cellulose production. Bioresource Technology; 344: 126343.
  • [38]. Abdelraof M, El Saied H, Hasanin MS. 2022. Green Immobilization of Glucanobacter xylinum onto natural polymers to sustainable bacterial cellulose production. Waste Biomass Valor; 13 (4): 2053–69.
  • [39]. Azmi, SNNS, Fabli, SNNFM, Aris, FAF, Samsu, ZA, Asnawi, ASFM, Yusof, YM, Ariffin, H, Abdullah, SSS. 2021. Fresh oil palm frond juice as a novel and alternative fermentation medium for bacterial cellulose production. Materials Today: Proceed; 42: 101-106.
  • [40]. Hsieh, JT, Wang, MJ, Lai, JT, Liu, HS. 2016. A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. Journal of the Taiwan Institute of Chemical Engineers; 63: 46–51.
  • [41]. Fernandes, IDAA, Pedro, AC, Ribeiro, VR, Bortolini, DG, Ozaki, MSC, Maciel, GM, Haminiuk, CWI. 2020. Bacterial cellulose: From production optimization to new applications. International Journal of Biological Macromolecules; 164: 2598-2611.
  • [42]. Sperotto, G, Stasiak, LG, Godoi, JPMG, Gabiatti, NC, De Souza, SS. 2021. A review of culture media for bacterial cellulose production: complex, chemically defined and minimal media modulations. Cellulose; 28: 2649-2673.
  • [43]. Andriani, D, Apriyana, AY, Karina, M. 2020. The optimization of bacterial cellulose production and its applications: a review. Cellulose; 27 (12): 6747-6766.
  • [44]. Jiang, H, Song, Z, Hao, Y, Hu, X, Lin, X, Liu, S, Li, C. 2023. Effect of co-culture of Komagataeibacter nataicola and selected Lactobacillus fermentum on the production and characterization of bacterial cellulose. LWT; 173: 114224.
  • [45]. Li, W, Huang, X, Liu, H, Lian, H, Xu, B, Zhang, W, Sun, X, Wang, W, Jia, S, Zhong, C. 2023. Improvement in bacterial cellulose production by co-culturing Bacillus cereus and Komagataeibacter xylinus. Carbohydrate Polymers; 313: 120892.
  • [46]. Tapias, YAR, Di Monte, MV, Peltzer, MA, Salvay, AG. 2022. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chemistry; 372: 131346.
There are 46 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Articles
Authors

Nermin Hande Avcioglu 0000-0003-2243-5817

Project Number -
Publication Date September 30, 2024
Submission Date May 27, 2024
Acceptance Date July 17, 2024
Published in Issue Year 2024 Volume: 20 Issue: 3

Cite

APA Avcioglu, N. H. (2024). Propolis: as an Additive in Bacterial Cellulose Production. Celal Bayar University Journal of Science, 20(3), 10-18. https://doi.org/10.18466/cbayarfbe.1490668
AMA Avcioglu NH. Propolis: as an Additive in Bacterial Cellulose Production. CBUJOS. September 2024;20(3):10-18. doi:10.18466/cbayarfbe.1490668
Chicago Avcioglu, Nermin Hande. “Propolis: As an Additive in Bacterial Cellulose Production”. Celal Bayar University Journal of Science 20, no. 3 (September 2024): 10-18. https://doi.org/10.18466/cbayarfbe.1490668.
EndNote Avcioglu NH (September 1, 2024) Propolis: as an Additive in Bacterial Cellulose Production. Celal Bayar University Journal of Science 20 3 10–18.
IEEE N. H. Avcioglu, “Propolis: as an Additive in Bacterial Cellulose Production”, CBUJOS, vol. 20, no. 3, pp. 10–18, 2024, doi: 10.18466/cbayarfbe.1490668.
ISNAD Avcioglu, Nermin Hande. “Propolis: As an Additive in Bacterial Cellulose Production”. Celal Bayar University Journal of Science 20/3 (September 2024), 10-18. https://doi.org/10.18466/cbayarfbe.1490668.
JAMA Avcioglu NH. Propolis: as an Additive in Bacterial Cellulose Production. CBUJOS. 2024;20:10–18.
MLA Avcioglu, Nermin Hande. “Propolis: As an Additive in Bacterial Cellulose Production”. Celal Bayar University Journal of Science, vol. 20, no. 3, 2024, pp. 10-18, doi:10.18466/cbayarfbe.1490668.
Vancouver Avcioglu NH. Propolis: as an Additive in Bacterial Cellulose Production. CBUJOS. 2024;20(3):10-8.