Research Article
BibTex RIS Cite

One-Step Enzymatic Surface Modification of Graphene Oxide

Year 2024, Volume: 20 Issue: 3, 35 - 39, 30.09.2024
https://doi.org/10.18466/cbayarfbe.1491450

Abstract

Graphene oxide (GO) is a material that possesses extremely particular chemical and physical properties. Graphene-based nanomaterials have spurred the advancement of flexible nanocomposites for innovative applications that demand exceptional mechanical, thermal, electrical, optical and chemical properties. These structures have the potential to be applied in various domains due to their multifunctionality. Nevertheless, GO employed have a tendency to create robust aggregate when mixed with organic components. Hence, it is necessary to alter the surfaces of polymer matrices and GO to enhance dispersion stability and compatibility. Chemical functionalization of GO allows for extensive structural change, offering a wide range of alternatives. However, chemical modifcation can lead to the utilization of ecologically harmful chemicals and substantial expenditures of energy, time and costs. Biocompatible, non-cytotoxic, target-selective biotechnological methods are being investigated for surface modification of nanoparticles to address these concerns. This work explored a new approach to modify the GO surface utilizing natural biocatalysts, specifically enzymes. The method used a one-step process where the lipase enzyme was used to modify the GO surface with the methacrylic acid. This method is conducive to mild reaction conditions, free from the generation of chemical waste, and devoid of solvent utilization, addressing the concerns associated with chemical modification methods.

Ethical Statement

An Ethics Committee Certificate is not required.

Supporting Institution

Canakkale Onsekiz Mart University's Scientific Research Projects Coordination Unit

Project Number

FDK-2020-3297

Thanks

Canakkale Onsekiz Mart University's Scientific Research Projects Coordination Unit provided funding for this work (Grant Number: FDK-2020-3297).

References

  • [1]. Allen M. J., Tung V. C., Kaner, R. B. Honeycomb carbon: a review of graphene. Chemical reviews. 2010;110(1), 132-145.
  • [2]. Wei W., Qu X. Extraordinary physical properties of functionalized graphene. Small. 2012;8(14), 2138-2151.
  • [3]. Lonkar S. P., Deshmukh Y. S., Abdala A. A. Recent Advances in Chemical Modifications of Graphene Recent Advances in Chemical Modifications of Graphene. Nano Research. 2015;8(4), 1039-1074.
  • [4]. Adetayo A., Runsewe D. Synthesis and fabrication of graphene and graphene oxide: A review. Open journal of composite materials, 2019;9(02), 207.
  • [5]. Khine Y. Y., Wen X., Jin X., Foller T., Joshi R. Functional groups in graphene oxide. Physical Chemistry Chemical Physics, 2022;24(43), 26337-26355.
  • [6]. Farjadian F., Abbaspour S., Sadatlu M. A. A., Mirkiani S., Ghasemi A., Hoseini‐Ghahfarokhi M., Hamblin M. R. et al. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect. 2020;5(33), 10200-10219.
  • [7]. Yang Y., Han C., Jiang B., Iocozzia J., He C., Shi D., et al. Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering: R: Reports. 2016;102, 1-72.
  • [8]. AshokKumar S. S., Bashir S., Ramesh K., Ramesh S. A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future. Journal of Materials Science. 2022;57(26), 12236-12278.
  • [9]. Wei X., Meng Z., Ruiz L., Xia W., Lee C., Kysar J. W., et al. Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation. ACS nano. 2016;10(2), 1820-1828.
  • [10]. Dramou P., Dahn S. L., Wang F., Sun Y., Song Z., Liu H., et al. Current review about design's impact on analytical achievements of magnetic graphene oxide nanocomposites. TrAC Trends in Analytical Chemistry. 2021;137, 116211.
  • [11]. Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene/graphene oxide: A review. RSC advances. 2020;10(26), 15328-15345.
  • [12]. Liu J., Chen S., Liu Y., Zhao B. Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society. 2022;26(6), 101560.
  • [13]. Kuila T., Bose S., Mishra A. K., Khanra P., Kim N. H., Lee J. H. Chemical functionalization of graphene and its applications. Progress in Materials Science. 2012;57(7), 1061-1105.
  • [14]. Chhabra V. A., Deep A., Kaur R., Kumar R. Functionalization of graphene using carboxylation process. Int. j. adv. sci. eng. Technol. 2012;4, 13-19.
  • [15]. Joshi D. J., Koduru J. R., Malek N. I., Hussain C. M., Kailasa S. K. Surface modifications and analytical applications of graphene oxide: A review. TrAC Trends in Analytical Chemistry. 2021;144, 116448.
  • [16]. Huang G., Chen Z., Li M., Yang B., Xin M., Li S., et al. Surface functional modification of graphene and graphene oxide. Acta Chimica Sinica. 2016;74(10), 789.
  • [17]. Jin Y., Zheng Y., Podkolzin S. G., Lee W. Band gap of reduced graphene oxide tuned by controlling functional groups. Journal of Materials Chemistry C. 2020;8(14), 4885-4894.
  • [18]. Silva M., Alves N. M., Paiva M. C. Graphene‐polymer nanocomposites for biomedical applications. Polymers for Advanced Technologies. 2018;29(2), 687-700.
  • [19]. Wang J., Liang G., Zhao W., Zhang Z. Enzymatic surface modification of PBO fibres. Surface and Coatings Technology. 2007;201(8), 4800–4804.
  • [20]. Qiu X., Hong Z., Hu J., Chen L., Chen X., Jing X. Hydroxyapatite Surface Modified by L -Lactic Acid and Its Subsequent Grafting Polymerization of L -Lactide. Biomacromolecules. 2005;1193–1199.
  • [21]. Battistel E., Morra M., Marinetti M. Enzymatic surface modification of acrylonitrile fibers. Applied Surface Science. 2001;177(1–2), 32–41.
  • [22]. Danisman M., Berisha A., Dagdag O., Oral, A. Surface modification of hydroxyapatite with enzyme-catalyzed reaction: Computation-supported experimental studies. Materials Chemistry and Physics. 2022;289, 126448.
  • [23]. Chen J., Dai F., Zhang L., Xu J., Liu W., Zeng S., et al. Molecular insights into the dispersion stability of graphene oxide in mixed solvents: Theoretical simulations and experimental verification. Journal of colloid and interface science. 2020;571, 109-117.
  • [24]. Rana K., Kaur H., Singh N., Sithole T., Siwal S. S. Graphene-based materials: Unravelling its impact in wastewater treatment for sustainable environments. Next Materials. 2024;3, 100107.
  • [25]. Goncalves G., Marques P. A. A. P., Granadeiro C. M., Nogueira H. I. S., Singh M. K., Gr J. Surface Modification of Graphene Nanosheets with Gold Nanoparticles : The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chem. Mater. 2009; 21, 20, 4796–4802.
  • [26]. Salihi E. Ç., Wang J., Coleman D.L., Siller L. Enhanced removal of nickel (II) ions from aqueous solutions by SDS-functionalized grapheme oxide. Journal of Seperation Sicence and Technology. 2016;51(8), 1317-1327.
  • [27]. Gao J., Huang B., Lei J., Zheng Z. Photografting of Methacrylic Acid Onto Hydroxyapatite Particles Surfaces. Journal of Applied Polymer Science. 2010; 115, 2156–2161.
  • [28]. Peng S., Liu C., Fan X. Surface Modification of Graphene Oxide by Carboxyl-Group : Preparation, Characterization, and Application for Proteins Immobilization, Integrated Ferroelectrics. 2015;163:42–53.
  • [29]. Sahoo S., Karthikeyan G., Nayak G. C., Das C. K. Modified graphene/polyaniline nanocomposites for supercapacitor application. Macromolecular Research. 2012;20(4), 415–421.
  • [30]. Sharma R., Chisti Y., Benarjae Chand U. Production, purification, characterization, and applications of lipases, Biotechnology Advances. 2019;19, 627–662.
Year 2024, Volume: 20 Issue: 3, 35 - 39, 30.09.2024
https://doi.org/10.18466/cbayarfbe.1491450

Abstract

Project Number

FDK-2020-3297

References

  • [1]. Allen M. J., Tung V. C., Kaner, R. B. Honeycomb carbon: a review of graphene. Chemical reviews. 2010;110(1), 132-145.
  • [2]. Wei W., Qu X. Extraordinary physical properties of functionalized graphene. Small. 2012;8(14), 2138-2151.
  • [3]. Lonkar S. P., Deshmukh Y. S., Abdala A. A. Recent Advances in Chemical Modifications of Graphene Recent Advances in Chemical Modifications of Graphene. Nano Research. 2015;8(4), 1039-1074.
  • [4]. Adetayo A., Runsewe D. Synthesis and fabrication of graphene and graphene oxide: A review. Open journal of composite materials, 2019;9(02), 207.
  • [5]. Khine Y. Y., Wen X., Jin X., Foller T., Joshi R. Functional groups in graphene oxide. Physical Chemistry Chemical Physics, 2022;24(43), 26337-26355.
  • [6]. Farjadian F., Abbaspour S., Sadatlu M. A. A., Mirkiani S., Ghasemi A., Hoseini‐Ghahfarokhi M., Hamblin M. R. et al. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect. 2020;5(33), 10200-10219.
  • [7]. Yang Y., Han C., Jiang B., Iocozzia J., He C., Shi D., et al. Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering: R: Reports. 2016;102, 1-72.
  • [8]. AshokKumar S. S., Bashir S., Ramesh K., Ramesh S. A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future. Journal of Materials Science. 2022;57(26), 12236-12278.
  • [9]. Wei X., Meng Z., Ruiz L., Xia W., Lee C., Kysar J. W., et al. Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation. ACS nano. 2016;10(2), 1820-1828.
  • [10]. Dramou P., Dahn S. L., Wang F., Sun Y., Song Z., Liu H., et al. Current review about design's impact on analytical achievements of magnetic graphene oxide nanocomposites. TrAC Trends in Analytical Chemistry. 2021;137, 116211.
  • [11]. Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene/graphene oxide: A review. RSC advances. 2020;10(26), 15328-15345.
  • [12]. Liu J., Chen S., Liu Y., Zhao B. Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society. 2022;26(6), 101560.
  • [13]. Kuila T., Bose S., Mishra A. K., Khanra P., Kim N. H., Lee J. H. Chemical functionalization of graphene and its applications. Progress in Materials Science. 2012;57(7), 1061-1105.
  • [14]. Chhabra V. A., Deep A., Kaur R., Kumar R. Functionalization of graphene using carboxylation process. Int. j. adv. sci. eng. Technol. 2012;4, 13-19.
  • [15]. Joshi D. J., Koduru J. R., Malek N. I., Hussain C. M., Kailasa S. K. Surface modifications and analytical applications of graphene oxide: A review. TrAC Trends in Analytical Chemistry. 2021;144, 116448.
  • [16]. Huang G., Chen Z., Li M., Yang B., Xin M., Li S., et al. Surface functional modification of graphene and graphene oxide. Acta Chimica Sinica. 2016;74(10), 789.
  • [17]. Jin Y., Zheng Y., Podkolzin S. G., Lee W. Band gap of reduced graphene oxide tuned by controlling functional groups. Journal of Materials Chemistry C. 2020;8(14), 4885-4894.
  • [18]. Silva M., Alves N. M., Paiva M. C. Graphene‐polymer nanocomposites for biomedical applications. Polymers for Advanced Technologies. 2018;29(2), 687-700.
  • [19]. Wang J., Liang G., Zhao W., Zhang Z. Enzymatic surface modification of PBO fibres. Surface and Coatings Technology. 2007;201(8), 4800–4804.
  • [20]. Qiu X., Hong Z., Hu J., Chen L., Chen X., Jing X. Hydroxyapatite Surface Modified by L -Lactic Acid and Its Subsequent Grafting Polymerization of L -Lactide. Biomacromolecules. 2005;1193–1199.
  • [21]. Battistel E., Morra M., Marinetti M. Enzymatic surface modification of acrylonitrile fibers. Applied Surface Science. 2001;177(1–2), 32–41.
  • [22]. Danisman M., Berisha A., Dagdag O., Oral, A. Surface modification of hydroxyapatite with enzyme-catalyzed reaction: Computation-supported experimental studies. Materials Chemistry and Physics. 2022;289, 126448.
  • [23]. Chen J., Dai F., Zhang L., Xu J., Liu W., Zeng S., et al. Molecular insights into the dispersion stability of graphene oxide in mixed solvents: Theoretical simulations and experimental verification. Journal of colloid and interface science. 2020;571, 109-117.
  • [24]. Rana K., Kaur H., Singh N., Sithole T., Siwal S. S. Graphene-based materials: Unravelling its impact in wastewater treatment for sustainable environments. Next Materials. 2024;3, 100107.
  • [25]. Goncalves G., Marques P. A. A. P., Granadeiro C. M., Nogueira H. I. S., Singh M. K., Gr J. Surface Modification of Graphene Nanosheets with Gold Nanoparticles : The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chem. Mater. 2009; 21, 20, 4796–4802.
  • [26]. Salihi E. Ç., Wang J., Coleman D.L., Siller L. Enhanced removal of nickel (II) ions from aqueous solutions by SDS-functionalized grapheme oxide. Journal of Seperation Sicence and Technology. 2016;51(8), 1317-1327.
  • [27]. Gao J., Huang B., Lei J., Zheng Z. Photografting of Methacrylic Acid Onto Hydroxyapatite Particles Surfaces. Journal of Applied Polymer Science. 2010; 115, 2156–2161.
  • [28]. Peng S., Liu C., Fan X. Surface Modification of Graphene Oxide by Carboxyl-Group : Preparation, Characterization, and Application for Proteins Immobilization, Integrated Ferroelectrics. 2015;163:42–53.
  • [29]. Sahoo S., Karthikeyan G., Nayak G. C., Das C. K. Modified graphene/polyaniline nanocomposites for supercapacitor application. Macromolecular Research. 2012;20(4), 415–421.
  • [30]. Sharma R., Chisti Y., Benarjae Chand U. Production, purification, characterization, and applications of lipases, Biotechnology Advances. 2019;19, 627–662.
There are 30 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Merve Danışman 0000-0001-7295-6341

Ayhan Oral 0000-0003-4965-8754

Project Number FDK-2020-3297
Publication Date September 30, 2024
Submission Date June 3, 2024
Acceptance Date August 22, 2024
Published in Issue Year 2024 Volume: 20 Issue: 3

Cite

APA Danışman, M., & Oral, A. (2024). One-Step Enzymatic Surface Modification of Graphene Oxide. Celal Bayar University Journal of Science, 20(3), 35-39. https://doi.org/10.18466/cbayarfbe.1491450
AMA Danışman M, Oral A. One-Step Enzymatic Surface Modification of Graphene Oxide. CBUJOS. September 2024;20(3):35-39. doi:10.18466/cbayarfbe.1491450
Chicago Danışman, Merve, and Ayhan Oral. “One-Step Enzymatic Surface Modification of Graphene Oxide”. Celal Bayar University Journal of Science 20, no. 3 (September 2024): 35-39. https://doi.org/10.18466/cbayarfbe.1491450.
EndNote Danışman M, Oral A (September 1, 2024) One-Step Enzymatic Surface Modification of Graphene Oxide. Celal Bayar University Journal of Science 20 3 35–39.
IEEE M. Danışman and A. Oral, “One-Step Enzymatic Surface Modification of Graphene Oxide”, CBUJOS, vol. 20, no. 3, pp. 35–39, 2024, doi: 10.18466/cbayarfbe.1491450.
ISNAD Danışman, Merve - Oral, Ayhan. “One-Step Enzymatic Surface Modification of Graphene Oxide”. Celal Bayar University Journal of Science 20/3 (September 2024), 35-39. https://doi.org/10.18466/cbayarfbe.1491450.
JAMA Danışman M, Oral A. One-Step Enzymatic Surface Modification of Graphene Oxide. CBUJOS. 2024;20:35–39.
MLA Danışman, Merve and Ayhan Oral. “One-Step Enzymatic Surface Modification of Graphene Oxide”. Celal Bayar University Journal of Science, vol. 20, no. 3, 2024, pp. 35-39, doi:10.18466/cbayarfbe.1491450.
Vancouver Danışman M, Oral A. One-Step Enzymatic Surface Modification of Graphene Oxide. CBUJOS. 2024;20(3):35-9.