Research Article
BibTex RIS Cite

All-optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides

Year 2024, Volume: 20 Issue: 3, 84 - 90, 30.09.2024
https://doi.org/10.18466/cbayarfbe.1498313

Abstract

All-optical NOT, OR, and Exclusive OR(XOR) logic gates utilizing silicon slot waveguides are proposed and numerically analyzed in this work. The structure has a silicon slab with slot regions such as two input waveguides and square cavity resonators and one output waveguide. The optical spectra of the designed structures are attained with the method of finite difference time domain. The all-optical logic gate features of the design are achieved by applying optical signals with 00 or 1800 phase differences from the input ports. Basic parameters such as transmission spectrum (T), modulation depth (MD), and contrast ratio (CR) are performed to show the optical features and ability of the proposed logic gates. The threshold transmission limit is 1.7% to define the status of the output ports as ON or OFF. At 689.5 nm, the maximum transmission, modulation depth, and contrast ratio are 149%, 97%, and 15.36 dB, respectively.

References

  • [1]. Chai, Z, Hu, X, Wang, F, Niu, X, Xie, J, Gong, Q. 2017. Ultrafast all‐optical switching. Advanced Optical Materials; 5(7): 1600665.
  • [2]. Wang, X, Qi, H, Hu, X, Yu, Z, Ding, S, Du, Z, Gong, Q. 2021. Advances in photonic devices based on optical phase-change materials. Molecules; 26(9): 2813.
  • [3]. Wesemann, L, Davis, TJ, Roberts, A. 2021. Meta-optical and thin film devices for all-optical information processing. Applied Physics Reviews; 8(3): 031309.
  • [4]. Mohammadi, M, Habibi, F, Seifouri, M, Olyaee, S. 2022. Recent advances on all-optical photonic crystal analog-to-digital converter (ADC). Optical and Quantum Electronics; 54(3): 192.
  • [5]. Khonina, SN, Voronkov, GS, Grakhova, EP, Kazanskiy, NL, Kutluyarov, RV, Butt, MA. 2023. Polymer waveguide-based optical sensors—interest in bio, gas, temperature, and mechanical sensing applications. Coatings; 13(3): 549.
  • [6]. Wang, Z, Xu, X, Fan, D, Wang, Y, Subbaraman, H, Chen, RT. 2016. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits. Scientific Reports; 6(1): 24106.
  • [7]. Ferrando-Rocher, M, Herranz-Herruzo, JI, Valero-Nogueira, A, Baquero-Escudero, M. 2021. Half-mode waveguide based on gap waveguide technology for rapid prototyping. IEEE Microwave and Wireless Components Letters; 32(2): 117-120.
  • [8]. Singh, L, Zhu, G, Kumar, GM, Revathi, D, Pareek, P. 2021. Numerical simulation of all-optical logic functions at micrometer scale by using plasmonic metal-insulator-metal (MIM) waveguides. Optics & Laser Technology, 135: 106697.
  • [9]. Swarnakar, S, Reddy, SK, Harijan, R, Kumar, S. 2021. Design and modelling of all-optical NAND gate using metal–insulator–metal (MIM) waveguides-based Mach–Zehnder interferometers for high-speed information processing. Optical and Quantum Electronics; 53(9): 493.
  • [10]. Shnan, NS, Sadeghi, S, Farzaneh, M, Hamidi, SM, Belotelov, VI, Chernov, AI. 2022. Longitudinal magneto-optical Kerr effect in insulator/metal/insulator grating structure. Journal of Superconductivity and Novel Magnetism; 35(11): 3397-3401.
  • [11]. Jasim, WA, Ali, FM, Abdullah, AK, AbdulNabi, MA. 2021. Design and simulation of optical logic gates based on insulator-metal–insulator (IMI) plasmonic waveguides for optical communications. International Journal of Nonlinear Analysis and Applications; 12(2): 2483-2497.
  • [12]. Dionne, JA, Lezec, HJ, Atwater, HA. 2006. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Letters; 6(9): 1928-1932.
  • [13]. Su, R, Tang, D, Ding, W, Chen, L, Zhou, Z. 2011. Efficient transmission of crossing dielectric slot waveguides. Optics Express; 19(5): 4756-4761.
  • [14]. Mashanovich, GZ, Gardes, FY, Thomson, DJ, Hu, Y, Li, K, Nedeljkovic, M., Penades JS, Khokhar, AZ, Mitchell, CJ, Stankovic S, Topley R, Reynolds, SA, Wang, Y, Troia, B, Passaro, VMN, Littlejohns, CG, Bucio, TD, Wilson PR, Reed, GT. 2014. Silicon photonic waveguides and devices for near-and mid-IR applications. IEEE Journal of Selected Topics in Quantum Electronics; 21(4): 407-418.
  • [15]. Dhingra, N, Dell'Olio, F. 2020. Ultralow loss and high extinction ratio TM-pass polarizer in silicon photonics. IEEE Photonics Journal; 12(6): 1-11.
  • [16]. Sun, L, Zhang, Y, He, Y, Wang, H, Su, Y. 2020. Subwavelength structured silicon waveguides and photonic devices. Nanophotonics; 9(6): 1321-1340.
  • [17]. Su, Y, Zhang, Y, Qiu, C, Guo, X, Sun, L. 2020. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications. Advanced Materials Technologies; 5(8): 1901153.
  • [18]. Malka, D, Danan, Y, Ramon, Y, Zalevsky, Z. 2016. A photonic 1×4 power splitter based on multimode interference in silicon–gallium-nitride slot waveguide structures. Materials; 9(7): 516.
  • [19]. Nikolaevsky, L, Shchori, T, Malka, D. 2018. Modeling 1×8 MMI Green Light Power Splitter Based on Gallium-Nitride Slot Waveguide Structure. IEEE Photonics Technology Letters; 30(8): 720-723.
  • [20]. Sarkar, D, Jamal, I, Mitra, SK. 2013. Analysis, design and fabrication of optical waveguides for Mach–Zehnder Interferometry. Optics Communications; 311: 338-345.
  • [21]. Yu, R, Zhang, J, Chen, W, Wang, P, Li, Y, Li, J, Qiang F, Tingge D, Hui Y, Yang, J. 2021. Optical reversible logic gates based on graphene-silicon slot waveguides. Optik; 228: 166182.
  • [22]. Rutirawut, T, Talataisong, W, Gardes, FY. 2021. Designs of silicon nitride slot waveguide modulators with electro-optic polymer and the effect of induced charges in Si-substrate on their performance. IEEE Photonics Journal; 13(2): 1-15.
  • [23]. Chiang, LY, Wang, CT, Lin, TS, Pappert, S, Yu, P. 2020. Highly sensitive silicon photonic temperature sensor based on liquid crystal filled slot waveguide directional coupler. Optics Express; 28(20): 29345-29356.
  • [24]. Lipson, M. 2005. Guiding, modulating, and emitting light on silicon-challenges and opportunities. Journal of Lightwave Technology; 23(12): 4222-4238.
  • [25]. Simili, DV, Cada, M. 2019. Low loss slow light propagation in silicon slot waveguide. Optics Express; 27(18): 26203-26217.
  • [26]. Qin, W, Liu, J, Yang, WW, Chen, JX, Li, Y, Xu, RL. 2021. Integrated-designs of filtering circuits based on adjustable dielectric waveguide resonators. IEEE Transactions on Circuits and Systems II: Express Briefs; 69(2): 284-288.
  • [27]. Korkmaz, S. 2024. Design and analysis of high performance 1×N optical wavelength demultiplexers based on MIM waveguide with polygon resonators. Optical and Quantum Electronics; 56(7): 1219.
  • [28]. Palik, ED. Handbook of optical constants of solids. Academic Press, 1998; pp 565-566.
  • [29]. Abdulwahid, SH, Wadday, AG, Abdulsatar, SM. 2023. Design of optical combinational circuits utilized with hybrid plasmonic waveguides. Plasmonics; 18(1): 9-28.
  • [30]. Lumerical FDTD Solutions, www.lumerical.com.
  • [31]. Korkmaz, S. 2024. Multiple ultra-narrow band-stop filters based on MIM plasmonic waveguide with nanoring cavities. Physica Scripta; 99(3): 035503.
  • [32]. Anagha, EG, Jeyachitra, RK. 2022. Optimized design of an all-optical XOR gate with high contrast ratio and ultra-compact dimensions. Applied Physics B; 128(2): 21.
  • [33]. Choi, D, Shin, CK, Yoon, D, Chung, DS, Jin, YW, Lee, LP. 2014. Plasmonic optical interference. Nano Letters; 14(6): 3374-3381.
  • [34]. Fakhruldeen, HF, Mansour, TS. 2020. Design of plasmonic NOT logic gate based on insulator–metal–insulator (IMI) waveguides. Advanced Electromagnetics; 9(1): 91-94.
  • [35]. Mainka, Sharma, S, Zafar, R, Mahdieh, MH, Singh, G, Salim, M. High contrast ratio based all-optical OR and NOR plasmonic logic gate operating at E band. In Optical and Wireless Technologies: Proceedings of OWT 2018, Singapore, 2020, pp 325-332.
  • [36]. Zafar, R, Nawaz, S, Salim, M. 2018. Fano resonance excited all-optical XOR, XNOR, and NOT gates with high contrast ratio. Plasmonics; 13(6): 1987-1994.
  • [37]. Dolatabady, A, Granpayeh, N. 2017. All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator. Journal of Nanophotonics, 11(2): 026001-026001.
  • [38]. El Haffar, R, Mahboub, O, Farkhsi, A, Figuigue, M. 2022. All-optical logic gates using a plasmonic MIM waveguide and elliptical ring resonator. Plasmonics; 17: 831–842.
Year 2024, Volume: 20 Issue: 3, 84 - 90, 30.09.2024
https://doi.org/10.18466/cbayarfbe.1498313

Abstract

References

  • [1]. Chai, Z, Hu, X, Wang, F, Niu, X, Xie, J, Gong, Q. 2017. Ultrafast all‐optical switching. Advanced Optical Materials; 5(7): 1600665.
  • [2]. Wang, X, Qi, H, Hu, X, Yu, Z, Ding, S, Du, Z, Gong, Q. 2021. Advances in photonic devices based on optical phase-change materials. Molecules; 26(9): 2813.
  • [3]. Wesemann, L, Davis, TJ, Roberts, A. 2021. Meta-optical and thin film devices for all-optical information processing. Applied Physics Reviews; 8(3): 031309.
  • [4]. Mohammadi, M, Habibi, F, Seifouri, M, Olyaee, S. 2022. Recent advances on all-optical photonic crystal analog-to-digital converter (ADC). Optical and Quantum Electronics; 54(3): 192.
  • [5]. Khonina, SN, Voronkov, GS, Grakhova, EP, Kazanskiy, NL, Kutluyarov, RV, Butt, MA. 2023. Polymer waveguide-based optical sensors—interest in bio, gas, temperature, and mechanical sensing applications. Coatings; 13(3): 549.
  • [6]. Wang, Z, Xu, X, Fan, D, Wang, Y, Subbaraman, H, Chen, RT. 2016. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits. Scientific Reports; 6(1): 24106.
  • [7]. Ferrando-Rocher, M, Herranz-Herruzo, JI, Valero-Nogueira, A, Baquero-Escudero, M. 2021. Half-mode waveguide based on gap waveguide technology for rapid prototyping. IEEE Microwave and Wireless Components Letters; 32(2): 117-120.
  • [8]. Singh, L, Zhu, G, Kumar, GM, Revathi, D, Pareek, P. 2021. Numerical simulation of all-optical logic functions at micrometer scale by using plasmonic metal-insulator-metal (MIM) waveguides. Optics & Laser Technology, 135: 106697.
  • [9]. Swarnakar, S, Reddy, SK, Harijan, R, Kumar, S. 2021. Design and modelling of all-optical NAND gate using metal–insulator–metal (MIM) waveguides-based Mach–Zehnder interferometers for high-speed information processing. Optical and Quantum Electronics; 53(9): 493.
  • [10]. Shnan, NS, Sadeghi, S, Farzaneh, M, Hamidi, SM, Belotelov, VI, Chernov, AI. 2022. Longitudinal magneto-optical Kerr effect in insulator/metal/insulator grating structure. Journal of Superconductivity and Novel Magnetism; 35(11): 3397-3401.
  • [11]. Jasim, WA, Ali, FM, Abdullah, AK, AbdulNabi, MA. 2021. Design and simulation of optical logic gates based on insulator-metal–insulator (IMI) plasmonic waveguides for optical communications. International Journal of Nonlinear Analysis and Applications; 12(2): 2483-2497.
  • [12]. Dionne, JA, Lezec, HJ, Atwater, HA. 2006. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Letters; 6(9): 1928-1932.
  • [13]. Su, R, Tang, D, Ding, W, Chen, L, Zhou, Z. 2011. Efficient transmission of crossing dielectric slot waveguides. Optics Express; 19(5): 4756-4761.
  • [14]. Mashanovich, GZ, Gardes, FY, Thomson, DJ, Hu, Y, Li, K, Nedeljkovic, M., Penades JS, Khokhar, AZ, Mitchell, CJ, Stankovic S, Topley R, Reynolds, SA, Wang, Y, Troia, B, Passaro, VMN, Littlejohns, CG, Bucio, TD, Wilson PR, Reed, GT. 2014. Silicon photonic waveguides and devices for near-and mid-IR applications. IEEE Journal of Selected Topics in Quantum Electronics; 21(4): 407-418.
  • [15]. Dhingra, N, Dell'Olio, F. 2020. Ultralow loss and high extinction ratio TM-pass polarizer in silicon photonics. IEEE Photonics Journal; 12(6): 1-11.
  • [16]. Sun, L, Zhang, Y, He, Y, Wang, H, Su, Y. 2020. Subwavelength structured silicon waveguides and photonic devices. Nanophotonics; 9(6): 1321-1340.
  • [17]. Su, Y, Zhang, Y, Qiu, C, Guo, X, Sun, L. 2020. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications. Advanced Materials Technologies; 5(8): 1901153.
  • [18]. Malka, D, Danan, Y, Ramon, Y, Zalevsky, Z. 2016. A photonic 1×4 power splitter based on multimode interference in silicon–gallium-nitride slot waveguide structures. Materials; 9(7): 516.
  • [19]. Nikolaevsky, L, Shchori, T, Malka, D. 2018. Modeling 1×8 MMI Green Light Power Splitter Based on Gallium-Nitride Slot Waveguide Structure. IEEE Photonics Technology Letters; 30(8): 720-723.
  • [20]. Sarkar, D, Jamal, I, Mitra, SK. 2013. Analysis, design and fabrication of optical waveguides for Mach–Zehnder Interferometry. Optics Communications; 311: 338-345.
  • [21]. Yu, R, Zhang, J, Chen, W, Wang, P, Li, Y, Li, J, Qiang F, Tingge D, Hui Y, Yang, J. 2021. Optical reversible logic gates based on graphene-silicon slot waveguides. Optik; 228: 166182.
  • [22]. Rutirawut, T, Talataisong, W, Gardes, FY. 2021. Designs of silicon nitride slot waveguide modulators with electro-optic polymer and the effect of induced charges in Si-substrate on their performance. IEEE Photonics Journal; 13(2): 1-15.
  • [23]. Chiang, LY, Wang, CT, Lin, TS, Pappert, S, Yu, P. 2020. Highly sensitive silicon photonic temperature sensor based on liquid crystal filled slot waveguide directional coupler. Optics Express; 28(20): 29345-29356.
  • [24]. Lipson, M. 2005. Guiding, modulating, and emitting light on silicon-challenges and opportunities. Journal of Lightwave Technology; 23(12): 4222-4238.
  • [25]. Simili, DV, Cada, M. 2019. Low loss slow light propagation in silicon slot waveguide. Optics Express; 27(18): 26203-26217.
  • [26]. Qin, W, Liu, J, Yang, WW, Chen, JX, Li, Y, Xu, RL. 2021. Integrated-designs of filtering circuits based on adjustable dielectric waveguide resonators. IEEE Transactions on Circuits and Systems II: Express Briefs; 69(2): 284-288.
  • [27]. Korkmaz, S. 2024. Design and analysis of high performance 1×N optical wavelength demultiplexers based on MIM waveguide with polygon resonators. Optical and Quantum Electronics; 56(7): 1219.
  • [28]. Palik, ED. Handbook of optical constants of solids. Academic Press, 1998; pp 565-566.
  • [29]. Abdulwahid, SH, Wadday, AG, Abdulsatar, SM. 2023. Design of optical combinational circuits utilized with hybrid plasmonic waveguides. Plasmonics; 18(1): 9-28.
  • [30]. Lumerical FDTD Solutions, www.lumerical.com.
  • [31]. Korkmaz, S. 2024. Multiple ultra-narrow band-stop filters based on MIM plasmonic waveguide with nanoring cavities. Physica Scripta; 99(3): 035503.
  • [32]. Anagha, EG, Jeyachitra, RK. 2022. Optimized design of an all-optical XOR gate with high contrast ratio and ultra-compact dimensions. Applied Physics B; 128(2): 21.
  • [33]. Choi, D, Shin, CK, Yoon, D, Chung, DS, Jin, YW, Lee, LP. 2014. Plasmonic optical interference. Nano Letters; 14(6): 3374-3381.
  • [34]. Fakhruldeen, HF, Mansour, TS. 2020. Design of plasmonic NOT logic gate based on insulator–metal–insulator (IMI) waveguides. Advanced Electromagnetics; 9(1): 91-94.
  • [35]. Mainka, Sharma, S, Zafar, R, Mahdieh, MH, Singh, G, Salim, M. High contrast ratio based all-optical OR and NOR plasmonic logic gate operating at E band. In Optical and Wireless Technologies: Proceedings of OWT 2018, Singapore, 2020, pp 325-332.
  • [36]. Zafar, R, Nawaz, S, Salim, M. 2018. Fano resonance excited all-optical XOR, XNOR, and NOT gates with high contrast ratio. Plasmonics; 13(6): 1987-1994.
  • [37]. Dolatabady, A, Granpayeh, N. 2017. All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator. Journal of Nanophotonics, 11(2): 026001-026001.
  • [38]. El Haffar, R, Mahboub, O, Farkhsi, A, Figuigue, M. 2022. All-optical logic gates using a plasmonic MIM waveguide and elliptical ring resonator. Plasmonics; 17: 831–842.
There are 38 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications, Engineering Electromagnetics
Journal Section Articles
Authors

Semih Korkmaz 0000-0001-5576-7653

Publication Date September 30, 2024
Submission Date June 9, 2024
Acceptance Date September 9, 2024
Published in Issue Year 2024 Volume: 20 Issue: 3

Cite

APA Korkmaz, S. (2024). All-optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(3), 84-90. https://doi.org/10.18466/cbayarfbe.1498313
AMA Korkmaz S. All-optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides. CBUJOS. September 2024;20(3):84-90. doi:10.18466/cbayarfbe.1498313
Chicago Korkmaz, Semih. “All-Optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, no. 3 (September 2024): 84-90. https://doi.org/10.18466/cbayarfbe.1498313.
EndNote Korkmaz S (September 1, 2024) All-optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 3 84–90.
IEEE S. Korkmaz, “All-optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides”, CBUJOS, vol. 20, no. 3, pp. 84–90, 2024, doi: 10.18466/cbayarfbe.1498313.
ISNAD Korkmaz, Semih. “All-Optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/3 (September 2024), 84-90. https://doi.org/10.18466/cbayarfbe.1498313.
JAMA Korkmaz S. All-optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides. CBUJOS. 2024;20:84–90.
MLA Korkmaz, Semih. “All-Optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 20, no. 3, 2024, pp. 84-90, doi:10.18466/cbayarfbe.1498313.
Vancouver Korkmaz S. All-optical NOT, OR, and XOR Logic Gates Using Silicon Slot Waveguides. CBUJOS. 2024;20(3):84-90.