Research Article
BibTex RIS Cite

The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study

Year 2024, Volume: 20 Issue: 4, 116 - 122, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1490879

Abstract

Cancer is one of the deadliest diseases worldwide, and for this reason, it is a prominent field of study in drug development. It has been reported in various studies that some of the plants and essential oils obtained from plants have high anticancer activities. This situation is related to the compound groups found in plants and essential oils. Studies on using essential oils in combination with synthetic drugs or aromatherapy are ongoing. Essential oils show cytotoxic properties and may play a role in the death of cancer cells. Eugenol is an important compound found in clove, laurel, and cinnamon essential oils that has anticancer activity in various types of cancer. Eugenol has the ability to reduce cyclooxygenase-2 (COX-2) activity and to inhibit cell proliferation through NF-κB suppression in various types of cancer. In this study, the binding profiles of eugenol with COX-2 and Human inhibitor of nuclear transcription factor κB (IkB) kinase beta, which plays a crucial role in the NF-κB signaling pathway, were examined by molecular docking study, which is one of the methods used in computer-aided drug design. A supporting study was performed to understand the electrostatic complementarity between ligand and receptor by molecular electrostatic potential (MEP) analysis. As a result of the study, it was comparatively presented that eugenol has similar interaction profiles with reference compounds.

References

  • [1]. Solowey, E, Lichtenstein, M, Sallon, S, Paavilainen, H, Solowey, E, Lorberboum-Galski, H. 2014. Evaluating medicinal plants for anticancer activity. The Scientific World Journal, 2014.
  • [2]. Ohiagu, FO, Chikezie, PC, Chikezie, CM, Enyoh, CE. 2021. Anticancer activity of Nigerian medicinal plants: a review. Future Journal of Pharmaceutical Sciences, 7: 1-21.
  • [3]. Aboul-Enein, AM, El-Ela, FA, Shalaby, EA, El-Shemy, HA. 2012. Traditional medicinal plants research in Egypt: Studies of antioxidant and anticancer activities. J Med Plants Res, 6(5): 689-703.
  • [4]. Sharma, M, Grewal, K, Jandrotia, R, Batish, DR, Singh, HP, Kohli, RK. 2022. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomedicine & Pharmacotherapy, 146: 112514.
  • [5]. Taheri, E, Ghorbani, S, Safi, M, Sani, NS, Amoodizaj, FF, Heidari, M, ... & Heidari, M. 2020. Inhibition of colorectal cancer cell line CaCo-2 by essential oil of eucalyptus camaldulensis through induction of apoptosis. Acta Medica Iranica, 260-265.
  • [6]. El-Darier, SM, El-Ahwany, AM, Elkenany, ET, Abdeldaim, AA. 2018. An in vitro study on antimicrobial and anticancer potentiality of thyme and clove oils. Rendiconti Lincei. Scienze Fisiche e Naturali, 29: 131-139.
  • [7]. Cimino, C, Maurel, OM, Musumeci, T, Bonaccorso, A, Drago, F, Souto, EMB, ... & Carbone, C. 2021. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics, 13(3): 327.
  • [8]. Ercin, E, Kecel-Gunduz, S, Gok, B, Aydin, T, Budama-Kilinc, Y, Kartal, M. 2022. Laurus nobilis L. essential oil-loaded PLGA as a nanoformulation candidate for cancer treatment. Molecules, 27(6): 1899.
  • [9]. Zari, AT, Zari, TA, Hakeem, KR. 2021. Anticancer properties of eugenol: A review. Molecules, 26(23): 7407.
  • [10]. Nisar, MF, Khadim, M, Rafiq, M, Chen, J, Yang, Y, Wan, CC. 2021. Pharmacological properties and health benefits of eugenol: A comprehensive review. Oxidative medicine and cellular longevity, 2021.
  • [11]. Ulanowska, M, Olas, B. 2021. Biological properties and prospects for the application of eugenol—a review. International journal of molecular sciences, 22(7): 3671.
  • [12]. TR, DP, Haykal, MN. 2021. Eugenol Nanoparticle Encapsulated Chitosan Enhances Cell Cycle Arrest in HeLa Human Cervical Cancer Cells. Systematic Reviews in Pharmacy, 12(2).
  • [13]. Liu, H, Schmitz, JC, Wei, J, Cao, S, Beumer, JH, Strychor, S, ... & Lin, X. 2014. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis. Oncology research, 21(5): 247.
  • [14]. Fuertes-Agudo, M, Luque-Tévar, M, Cucarella, C, Martín-Sanz, P, Casado, M. 2023. Advances in understanding the role of NRF2 in liver pathophysiology and its relationship with hepatic-specific Cyclooxygenase-2 expression. Antioxidants, 12(8): 1491.
  • [15]. Méric, JB, Rottey, S, Olaussen, K, Soria, JC, Khayat, D, Rixe, O, Spano, JP. 2006. Cyclooxygenase-2 as a target for anticancer drug development. Critical reviews in oncology/hematology, 59(1): 51-64.
  • [16]. Jaganathan, SK, Supriyanto, E. 2012. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules, 17(6):6290-6304.
  • [17]. Xia, Y, Shen, S, Verma, IM. 2014. NF-κB, an active player in human cancers. Cancer immunology research, 2(9): 823-830.
  • [18]. Schmid, JA, Birbach, A. 2008. IκB kinase β (IKKβ/IKK2/IKBKB)—A key molecule in signaling to the transcription factor NF-κB. Cytokine & growth factor reviews. Cytokine & growth factor reviews, 19(2): 157-165.
  • [19]. Yadav, D, Mishra, BN, Khan, F. 2018. 3D-QSAR and docking studies on ursolic acid derivatives for anticancer activity based on bladder cell line T24 targeting NF-kB pathway inhibition. Journal of Biomolecular Structure and Dynamics, 37(14): 3822-3837.
  • [20]. Islam, SS, Ibtehaj, AS, Ahlam, S, Aboussekhra, A. 2016. Eugenol potentiates the effect of cisplatin on cancer stem-like cells through targeting the NF-κB pathway. Cancer Research, 76(14_Supplement): 2907-2907.
  • [21]. Manikandan, P, Vinothini, G, Vidya Priyadarsini, R, Prathiba, D, Nagini, S. 2011. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investigational new drugs, 29: 110-117.
  • [22]. Ferreira, LG, Dos Santos, RN, Oliva, G, Andricopulo, AD. 2015. Molecular docking and structure-based drug design strategies. Molecules, 20(7): 13384-13421.
  • [23]. Pepe, G, Siri, D, Reboul, JP. 1992. The molecular electrostatic potential and drug design. Journal of Molecular Structure: THEOCHEM, 256: 175-185.
  • [24]. Carpio-Martínez, P, Cortés-Guzmán, F. 2023. Structural and bond evolutions during a chemical reaction. In Advances in Quantum Chemical Topology Beyond QTAIM, 53-71.
  • [25]. Murray, JS, Sen, K. (Eds.). 1996. Molecular electrostatic potentials: concepts and applications.
  • [26]. Frisch, MJ, Trucks, GW, Schlegel, HB, Scuseria, GE, Robb, MA, Cheeseman, JR, et.al. 2003. Revision B. Gaussian. Inc., Pittsburgh PA.
  • [27]. Trott, O, Olson, AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2): 455-461.
  • [28]. Wiyono, AS, Diyah, NW. 2023. Molecular docking of 5-o-benzoylpinostrobin derivatives from Boesenbergia pandurata roxb. as anti-inflammatory. Journal of Public Health in Africa, 14(Suppl 1).
  • [29]. Nadia, L, Mouna, C, Djadi, N. 2024. Exploring the Interactions of Natural Flavonoids with COX-2: Insights from Molecular Docking, DFT Analysis, and ADME Calculations. Physical Chemistry Research, 12(3): 675-691.
  • [30]. Panthı, VK, Kaushal, S, Adhıkarı, B, Basnet, N, Chaudhary, D, Pajarulı, RR, Pokhrel, P. 2020. A Review of Quercetin: Anti-Cancer Activity. International Journal of Innovative Research and Reviews, 4(1): 1-7.
  • [31]. Artos, RIH, Avila, GAA. 2023. Theoretical Analysis of Potential Selective Cyclooxygenase (Cox)-2 Inhibitors in Active Ingredients of Medicinal Plants by Molecular Docking. International Journal of Latest Research in Humanities and Social Science, 6(4): 21-30.
  • [32]. Das Chagas Pereira de Andrade, F, Mendes, AN. 2020. Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways. Scientific reports, 10(1): 16204.
  • [33]. Cho, YW, Lim, HJ, Han, MH, Kim, BC, Han, S. 2020. Small molecule inhibitors of IκB kinase β: a chip-based screening and molecular docking simulation. Bioorganic & Medicinal Chemistry, 28(9): 115440.
  • [34]. Raju, SK, Kumar, S, Sekar, P, Sundhararajan, N, Nagalingam, Y. 2023. Ligand Based Multi-Targeted Molecular Docking Analysis of Terpenoid Phytoconstituents as Potential Chemotherapeutic Agents Against Breast Cancer: An In Silico Approach. prevention, 22(2):55-62.
  • [35]. Kłos, P, Chlubek, D. 2022. Plant-derived terpenoids: a promising tool in the fight against melanoma. Cancers, 14(3): 502.
  • [36]. Wang, R, Wang, J, Ding, N, He, S, Zhao, Y, Gao, P. 2019. Effects of okadaic acid and hematein on human lung adenocarcinoma A549 cells and responses of mitochondria and endoplasmic reticulum apoptosis pathways. Translational Cancer Research, 8(3): 968.
  • [37]. Konstantinou, EK, Gioxari, A, Dimitriou, M, Panoutsopoulos, GI, Panagiotopoulos, AA. 2024. Molecular Pathways of Genistein Activity in Breast Cancer Cells. International Journal of Molecular Sciences, 25(10): 5556.
  • [38]. Chae, HS, Xu, R, Won, JY, Chin, YW, Yim, H. 2019. Molecular targets of genistein and its related flavonoids to exert anticancer effects. International Journal of Molecular Sciences, 20(10): 2420.
  • [39]. Pavese, JM, Farmer, RL, Bergan, RC. 2010. Inhibition of cancer cell invasion and metastasis by genistein. Cancer and Metastasis Reviews, 29: 465-482.
  • [40]. Fossatelli, L, Maroccia, Z, Fiorentini, C, Bonucci, M. 2023. Resources for Human Health from the Plant Kingdom: The Potential Role of the Flavonoid Apigenin in Cancer Counteraction. International journal of molecular sciences, 25(1): 251.
  • [41]. Peanlikhit, T, Aryal, U, Welsh, J, Shroyer, K, Rithidech, K. 2024. In silico comparison of apigenin and related compounds with diverse pharmacological activities using AutoDock 4.2. 6.
  • [42]. Bağlan, M, Gören, K, Yıldıko, Ü. 2023. HOMO–LUMO, NBO, NLO, MEP analysis and molecular docking using DFT calculations in DFPA molecule. International Journal of Chemistry and Technology, 7(1): 38-47.
  • [43]. Buvaneswari, M, Santhakumari, R, Usha, C, Jayasree, R, Sagadevan, S. 2021. Synthesis, growth, structural, spectroscopic, optical, thermal, DFT, HOMO–LUMO, MEP, NBO analysis and thermodynamic properties of vanillin isonicotinic hydrazide single crystal. Journal of Molecular Structure, 1243: 130856.
  • [44]. Saravanan, RR, Seshadri, S, Gunasekaran, S, Mendoza-Meroño, R, García-Granda, S. 2015. Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139: 321-328.
  • [45]. Alminderej, F, Bakari, S, Almundarij, TI, Snoussi, M, Aouadi, K, Kadri, A. 2020. Antioxidant activities of a new chemotype of Piper cubeba L. fruit essential oil (Methyleugenol/Eugenol): In Silico molecular docking and ADMET studies. Plants, 9(11): 1534.
Year 2024, Volume: 20 Issue: 4, 116 - 122, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1490879

Abstract

References

  • [1]. Solowey, E, Lichtenstein, M, Sallon, S, Paavilainen, H, Solowey, E, Lorberboum-Galski, H. 2014. Evaluating medicinal plants for anticancer activity. The Scientific World Journal, 2014.
  • [2]. Ohiagu, FO, Chikezie, PC, Chikezie, CM, Enyoh, CE. 2021. Anticancer activity of Nigerian medicinal plants: a review. Future Journal of Pharmaceutical Sciences, 7: 1-21.
  • [3]. Aboul-Enein, AM, El-Ela, FA, Shalaby, EA, El-Shemy, HA. 2012. Traditional medicinal plants research in Egypt: Studies of antioxidant and anticancer activities. J Med Plants Res, 6(5): 689-703.
  • [4]. Sharma, M, Grewal, K, Jandrotia, R, Batish, DR, Singh, HP, Kohli, RK. 2022. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomedicine & Pharmacotherapy, 146: 112514.
  • [5]. Taheri, E, Ghorbani, S, Safi, M, Sani, NS, Amoodizaj, FF, Heidari, M, ... & Heidari, M. 2020. Inhibition of colorectal cancer cell line CaCo-2 by essential oil of eucalyptus camaldulensis through induction of apoptosis. Acta Medica Iranica, 260-265.
  • [6]. El-Darier, SM, El-Ahwany, AM, Elkenany, ET, Abdeldaim, AA. 2018. An in vitro study on antimicrobial and anticancer potentiality of thyme and clove oils. Rendiconti Lincei. Scienze Fisiche e Naturali, 29: 131-139.
  • [7]. Cimino, C, Maurel, OM, Musumeci, T, Bonaccorso, A, Drago, F, Souto, EMB, ... & Carbone, C. 2021. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics, 13(3): 327.
  • [8]. Ercin, E, Kecel-Gunduz, S, Gok, B, Aydin, T, Budama-Kilinc, Y, Kartal, M. 2022. Laurus nobilis L. essential oil-loaded PLGA as a nanoformulation candidate for cancer treatment. Molecules, 27(6): 1899.
  • [9]. Zari, AT, Zari, TA, Hakeem, KR. 2021. Anticancer properties of eugenol: A review. Molecules, 26(23): 7407.
  • [10]. Nisar, MF, Khadim, M, Rafiq, M, Chen, J, Yang, Y, Wan, CC. 2021. Pharmacological properties and health benefits of eugenol: A comprehensive review. Oxidative medicine and cellular longevity, 2021.
  • [11]. Ulanowska, M, Olas, B. 2021. Biological properties and prospects for the application of eugenol—a review. International journal of molecular sciences, 22(7): 3671.
  • [12]. TR, DP, Haykal, MN. 2021. Eugenol Nanoparticle Encapsulated Chitosan Enhances Cell Cycle Arrest in HeLa Human Cervical Cancer Cells. Systematic Reviews in Pharmacy, 12(2).
  • [13]. Liu, H, Schmitz, JC, Wei, J, Cao, S, Beumer, JH, Strychor, S, ... & Lin, X. 2014. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis. Oncology research, 21(5): 247.
  • [14]. Fuertes-Agudo, M, Luque-Tévar, M, Cucarella, C, Martín-Sanz, P, Casado, M. 2023. Advances in understanding the role of NRF2 in liver pathophysiology and its relationship with hepatic-specific Cyclooxygenase-2 expression. Antioxidants, 12(8): 1491.
  • [15]. Méric, JB, Rottey, S, Olaussen, K, Soria, JC, Khayat, D, Rixe, O, Spano, JP. 2006. Cyclooxygenase-2 as a target for anticancer drug development. Critical reviews in oncology/hematology, 59(1): 51-64.
  • [16]. Jaganathan, SK, Supriyanto, E. 2012. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules, 17(6):6290-6304.
  • [17]. Xia, Y, Shen, S, Verma, IM. 2014. NF-κB, an active player in human cancers. Cancer immunology research, 2(9): 823-830.
  • [18]. Schmid, JA, Birbach, A. 2008. IκB kinase β (IKKβ/IKK2/IKBKB)—A key molecule in signaling to the transcription factor NF-κB. Cytokine & growth factor reviews. Cytokine & growth factor reviews, 19(2): 157-165.
  • [19]. Yadav, D, Mishra, BN, Khan, F. 2018. 3D-QSAR and docking studies on ursolic acid derivatives for anticancer activity based on bladder cell line T24 targeting NF-kB pathway inhibition. Journal of Biomolecular Structure and Dynamics, 37(14): 3822-3837.
  • [20]. Islam, SS, Ibtehaj, AS, Ahlam, S, Aboussekhra, A. 2016. Eugenol potentiates the effect of cisplatin on cancer stem-like cells through targeting the NF-κB pathway. Cancer Research, 76(14_Supplement): 2907-2907.
  • [21]. Manikandan, P, Vinothini, G, Vidya Priyadarsini, R, Prathiba, D, Nagini, S. 2011. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investigational new drugs, 29: 110-117.
  • [22]. Ferreira, LG, Dos Santos, RN, Oliva, G, Andricopulo, AD. 2015. Molecular docking and structure-based drug design strategies. Molecules, 20(7): 13384-13421.
  • [23]. Pepe, G, Siri, D, Reboul, JP. 1992. The molecular electrostatic potential and drug design. Journal of Molecular Structure: THEOCHEM, 256: 175-185.
  • [24]. Carpio-Martínez, P, Cortés-Guzmán, F. 2023. Structural and bond evolutions during a chemical reaction. In Advances in Quantum Chemical Topology Beyond QTAIM, 53-71.
  • [25]. Murray, JS, Sen, K. (Eds.). 1996. Molecular electrostatic potentials: concepts and applications.
  • [26]. Frisch, MJ, Trucks, GW, Schlegel, HB, Scuseria, GE, Robb, MA, Cheeseman, JR, et.al. 2003. Revision B. Gaussian. Inc., Pittsburgh PA.
  • [27]. Trott, O, Olson, AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2): 455-461.
  • [28]. Wiyono, AS, Diyah, NW. 2023. Molecular docking of 5-o-benzoylpinostrobin derivatives from Boesenbergia pandurata roxb. as anti-inflammatory. Journal of Public Health in Africa, 14(Suppl 1).
  • [29]. Nadia, L, Mouna, C, Djadi, N. 2024. Exploring the Interactions of Natural Flavonoids with COX-2: Insights from Molecular Docking, DFT Analysis, and ADME Calculations. Physical Chemistry Research, 12(3): 675-691.
  • [30]. Panthı, VK, Kaushal, S, Adhıkarı, B, Basnet, N, Chaudhary, D, Pajarulı, RR, Pokhrel, P. 2020. A Review of Quercetin: Anti-Cancer Activity. International Journal of Innovative Research and Reviews, 4(1): 1-7.
  • [31]. Artos, RIH, Avila, GAA. 2023. Theoretical Analysis of Potential Selective Cyclooxygenase (Cox)-2 Inhibitors in Active Ingredients of Medicinal Plants by Molecular Docking. International Journal of Latest Research in Humanities and Social Science, 6(4): 21-30.
  • [32]. Das Chagas Pereira de Andrade, F, Mendes, AN. 2020. Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways. Scientific reports, 10(1): 16204.
  • [33]. Cho, YW, Lim, HJ, Han, MH, Kim, BC, Han, S. 2020. Small molecule inhibitors of IκB kinase β: a chip-based screening and molecular docking simulation. Bioorganic & Medicinal Chemistry, 28(9): 115440.
  • [34]. Raju, SK, Kumar, S, Sekar, P, Sundhararajan, N, Nagalingam, Y. 2023. Ligand Based Multi-Targeted Molecular Docking Analysis of Terpenoid Phytoconstituents as Potential Chemotherapeutic Agents Against Breast Cancer: An In Silico Approach. prevention, 22(2):55-62.
  • [35]. Kłos, P, Chlubek, D. 2022. Plant-derived terpenoids: a promising tool in the fight against melanoma. Cancers, 14(3): 502.
  • [36]. Wang, R, Wang, J, Ding, N, He, S, Zhao, Y, Gao, P. 2019. Effects of okadaic acid and hematein on human lung adenocarcinoma A549 cells and responses of mitochondria and endoplasmic reticulum apoptosis pathways. Translational Cancer Research, 8(3): 968.
  • [37]. Konstantinou, EK, Gioxari, A, Dimitriou, M, Panoutsopoulos, GI, Panagiotopoulos, AA. 2024. Molecular Pathways of Genistein Activity in Breast Cancer Cells. International Journal of Molecular Sciences, 25(10): 5556.
  • [38]. Chae, HS, Xu, R, Won, JY, Chin, YW, Yim, H. 2019. Molecular targets of genistein and its related flavonoids to exert anticancer effects. International Journal of Molecular Sciences, 20(10): 2420.
  • [39]. Pavese, JM, Farmer, RL, Bergan, RC. 2010. Inhibition of cancer cell invasion and metastasis by genistein. Cancer and Metastasis Reviews, 29: 465-482.
  • [40]. Fossatelli, L, Maroccia, Z, Fiorentini, C, Bonucci, M. 2023. Resources for Human Health from the Plant Kingdom: The Potential Role of the Flavonoid Apigenin in Cancer Counteraction. International journal of molecular sciences, 25(1): 251.
  • [41]. Peanlikhit, T, Aryal, U, Welsh, J, Shroyer, K, Rithidech, K. 2024. In silico comparison of apigenin and related compounds with diverse pharmacological activities using AutoDock 4.2. 6.
  • [42]. Bağlan, M, Gören, K, Yıldıko, Ü. 2023. HOMO–LUMO, NBO, NLO, MEP analysis and molecular docking using DFT calculations in DFPA molecule. International Journal of Chemistry and Technology, 7(1): 38-47.
  • [43]. Buvaneswari, M, Santhakumari, R, Usha, C, Jayasree, R, Sagadevan, S. 2021. Synthesis, growth, structural, spectroscopic, optical, thermal, DFT, HOMO–LUMO, MEP, NBO analysis and thermodynamic properties of vanillin isonicotinic hydrazide single crystal. Journal of Molecular Structure, 1243: 130856.
  • [44]. Saravanan, RR, Seshadri, S, Gunasekaran, S, Mendoza-Meroño, R, García-Granda, S. 2015. Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139: 321-328.
  • [45]. Alminderej, F, Bakari, S, Almundarij, TI, Snoussi, M, Aouadi, K, Kadri, A. 2020. Antioxidant activities of a new chemotype of Piper cubeba L. fruit essential oil (Methyleugenol/Eugenol): In Silico molecular docking and ADMET studies. Plants, 9(11): 1534.
There are 45 citations in total.

Details

Primary Language English
Subjects Atomic and Molecular Physics
Journal Section Articles
Authors

Bilge Bıçak 0000-0003-1147-006X

Publication Date December 29, 2024
Submission Date May 29, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024 Volume: 20 Issue: 4

Cite

APA Bıçak, B. (2024). The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(4), 116-122. https://doi.org/10.18466/cbayarfbe.1490879
AMA Bıçak B. The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study. CBUJOS. December 2024;20(4):116-122. doi:10.18466/cbayarfbe.1490879
Chicago Bıçak, Bilge. “The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, no. 4 (December 2024): 116-22. https://doi.org/10.18466/cbayarfbe.1490879.
EndNote Bıçak B (December 1, 2024) The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 4 116–122.
IEEE B. Bıçak, “The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study”, CBUJOS, vol. 20, no. 4, pp. 116–122, 2024, doi: 10.18466/cbayarfbe.1490879.
ISNAD Bıçak, Bilge. “The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/4 (December 2024), 116-122. https://doi.org/10.18466/cbayarfbe.1490879.
JAMA Bıçak B. The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study. CBUJOS. 2024;20:116–122.
MLA Bıçak, Bilge. “The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 20, no. 4, 2024, pp. 116-22, doi:10.18466/cbayarfbe.1490879.
Vancouver Bıçak B. The Determination of Molecular Electrostatic Potential and Anticancer Properties of Eugenol: A Theoretical Study. CBUJOS. 2024;20(4):116-22.