Research Article
BibTex RIS Cite
Year 2024, Volume: 20 Issue: 4, 1 - 11, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1526601

Abstract

References

  • [1]. O. Bello and S. Zeadally, “Intelligent Device-to-Device Communication in the Internet of Things,” IEEE Systems Journal, vol. 10, no. 3, pp. 1172–1182, Sep. 2016, doi: 10.1109/JSYST.2014.2298837.
  • [2]. J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of Internet-of-Things platforms,” Computer Communications, vol. 89–90, pp. 5–16, Sep. 2016, doi: 10.1016/j.comcom.2016.03.015.
  • [3]. D. Sehrawat and N. S. Gill, “Smart Sensors: Analysis of Different Types of IoT Sensors,” in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India: IEEE, Apr. 2019, pp. 523–528. doi: 10.1109/ICOEI.2019.8862778.
  • [4]. A. J. Jara, P. Lopez, D. Fernandez, J. F. Castillo, M. A. Zamora, and A. F. Skarmeta, “Mobile digcovery: discovering and interacting with the world through the Internet of things,” Pers Ubiquit Comput, vol. 18, no. 2, pp. 323–338, Feb. 2014, doi: 10.1007/s00779-013-0648-0.
  • [5]. A. Čolaković and M. Hadžialić, “Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues,” Computer Networks, vol. 144, pp. 17–39, Oct. 2018, doi: 10.1016/j.comnet.2018.07.017.
  • [6]. R. H. Weber and E. Studer, “Cybersecurity in the Internet of Things: Legal aspects,” Computer Law & Security Review, vol. 32, no. 5, pp. 715–728, Oct. 2016, doi: 10.1016/j.clsr.2016.07.002.
  • [7]. S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of Things (IoT): A Literature Review,” JCC, vol. 03, no. 05, pp. 164–173, 2015, doi: 10.4236/jcc.2015.35021.
  • [8]. P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applications,” Journal of Electrical and Computer Engineering, vol. 2017, pp. 1–25, 2017, doi: 10.1155/2017/9324035.
  • [9]. Z. Ez Dallalbashi, S. Alhayalir, M. Jabbar Mnati, and A. Abd-aljbar Alhayali, “Low-cost battery monitoring circuit for a photovoltaic system based on LoRa/LoRaWAN network,” IJEECS, vol. 29, no. 2, p. 669, Feb. 2023, doi: 10.11591/ijeecs.v29.i2.pp669-677.
  • [10]. S. Nižetić, P. Šolić, D. López-de-Ipiña González-de-Artaza, and L. Patrono, “Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future,” Journal of Cleaner Production, vol. 274, p. 122877, Nov. 2020, doi: 10.1016/j.jclepro.2020.122877.
  • [11]. T. M. Ghazal et al., “IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare—A Review,” Future Internet, vol. 13, no. 8, p. 218, Aug. 2021, doi: 10.3390/fi13080218.
  • [12]. M. Javaid, A. Haleem, R. P. Singh, R. Suman, and E. S. Gonzalez, “Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability,” Sustainable Operations and Computers, vol. 3, pp. 203–217, 2022, doi: 10.1016/j.susoc.2022.01.008.
  • [13]. A. Ma, J. C. Tonday Rodriguez, and M. Sha, “Enabling Reliable Environmental Sensing with LoRa, Energy Harvesting, and Domain Adaptation,” in 2024 33rd International Conference on Computer Communications and Networks (ICCCN), Kailua-Kona, HI, USA: IEEE, Jul. 2024, pp. 1–9. doi: 10.1109/ICCCN61486.2024.10637563.
  • [14]. O. Chidolue and T. Iqbal, “Real-time monitoring and data acquisition using LoRa for a remote solar powered oil well,” IJAPE, vol. 13, no. 1, p. 201, Mar. 2024, doi: 10.11591/ijape.v13.i1.pp201-212.
  • [15]. R. Prodanović et al., “Wireless Sensor Network in Agriculture: Model of Cyber Security,” Sensors, vol. 20, no. 23, p. 6747, Nov. 2020, doi: 10.3390/s20236747.
  • [16]. F. B. G. Pratama, F. Hidayatullah, E. L. I. P. Sari, I. K. A. Enriko, F. N. Gustiyana, and A. Luthfi, “Solar-Powered LoRa Wireless Water Quality Monitoring for Saline Tilapia Aquaculture,” in 2024 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri Sarawak, Malaysia: IEEE, Jan. 2024, pp. 72–76. doi: 10.1109/GECOST60902.2024.10474710.
  • [17]. S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, “Internet of Things (IoT) communication protocols: Review,” in 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan: IEEE, May 2017, pp. 685–690. doi: 10.1109/ICITECH.2017.8079928.
  • [18]. A. Khalifeh, K. A. Aldahdouh, K. A. Darabkh, and W. Al-Sit, “A Survey of 5G Emerging Wireless Technologies Featuring LoRaWAN, Sigfox, NB-IoT and LTE-M,” in 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India: IEEE, Mar. 2019, pp. 561–566. doi: 10.1109/WiSPNET45539.2019.9032817.
  • [19]. G. Peruzzi and A. Pozzebon, “A Review of Energy Harvesting Techniques for Low Power Wide Area Networks (LPWANs),” Energies, vol. 13, no. 13, p. 3433, Jul. 2020, doi: 10.3390/en13133433.
  • [20]. S. Gupta and S. Gupta, “Energy Efficiency in IoT Based on Sensor Node Deployment Pattern,” RACSC, vol. 15, no. 6, p. e310322196674, Jul. 2022, doi: 10.2174/2666255814666210920160947.
  • [21]. G. M. Cabello, S. J. Navas, I. M. Vázquez, A. Iranzo, and F. J. Pino, “Renewable medium-small projects in Spain: Past and present of microgrid development,” Renewable and Sustainable Energy Reviews, vol. 165, p. 112622, Sep. 2022, doi: 10.1016/j.rser.2022.112622.
  • [22]. A. N. Talib, K. Hafeez, M. J. Mnati, and S. A. Khan, “Design and Implementation of New Battery Monitoring System for Photovoltaic Application,” in 2022 4th Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey: IEEE, Jun. 2022, pp. 1–7. doi: 10.1109/GPECOM55404.2022.9815759.
  • [23]. U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide Area Networks: An Overview,” IEEE Commun. Surv. Tutorials, vol. 19, no. 2, pp. 855–873, 2017, doi: 10.1109/COMST.2017.2652320.
  • [24]. A. Khalifeh, F. Mazunga, A. Nechibvute, and B. M. Nyambo, “Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review,” Sensors, vol. 22, no. 22, p. 8937, Nov. 2022, doi: 10.3390/s22228937.
  • [25]. K. Kutluay, Y. Cadirci, Y. S. Ozkazanc, and I. Cadirci, “A New Online State-of-Charge Estimation and Monitoring System for Sealed Lead–Acid Batteries in Telecommunication Power Supplies,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1315–1327, Oct. 2005, doi: 10.1109/TIE.2005.855671.
  • [26]. B. Al Homssi, K. Dakic, S. Maselli, H. Wolf, S. Kandeepan, and A. Al-Hourani, “IoT Network Design Using Open-Source LoRa Coverage Emulator,” IEEE Access, vol. 9, pp. 53636–53646, 2021, doi: 10.1109/ACCESS.2021.3070976.
  • [27]. D.-H. Kim, E.-K. Lee, and J. Kim, “Experiencing LoRa Network Establishment on a Smart Energy Campus Testbed,” Sustainability, vol. 11, no. 7, p. 1917, Mar. 2019, doi: 10.3390/su11071917.
  • [28]. A. Sales Mendes, D. M. Jiménez-Bravo, M. Navarro-Cáceres, V. Reis Quietinho Leithardt, and G. Villarrubia González, “Multi-Agent Approach Using LoRaWAN Devices: An Airport Case Study,” Electronics, vol. 9, no. 9, p. 1430, Sep. 2020, doi: 10.3390/electronics9091430.

Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems

Year 2024, Volume: 20 Issue: 4, 1 - 11, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1526601

Abstract

Solar array systems with photovoltaic (PV) modules are extensively utilized in remote fields, agriculture, military, and various other sections. However, the challenge lies in the long distances between these installations and end-users, necessitating remote monitoring systems. In this study, we leverage Long Range (LoRa) wireless communication technology due to its extended range, cost-effectiveness, and user-friendly nature. The study focuses on the design and implementation of a Monitoring System (MS) tailored for PV applications, utilizing LoRa technology. The primary objective is to enhance the efficiency, reliability, and maintenance of PV installations by continuously monitoring system health and performance. The MS encompasses sensors, microcontrollers, and processors to collect and process data on PV, battery banks, load, and grid parameters, including voltage, current, temperature, and state of charge (SoC). Processed data is transmitted via LoRa to a centralized control station for analysis and decision-making. LoRa's attributes, such as long-range coverage, low power consumption, and obstacle penetration, make it particularly suitable for remote PV installations. We provide a detailed overview of the system architecture, components, communication protocols, as well as data processing algorithms and battery health estimation techniques. Experimental evaluation conducted on a test PV setup demonstrates the MS's effectiveness in monitoring battery health, anomaly detection, and facilitating remote maintenance in the normal and up-normal conditions and modes. Simulation on the MATLAB/Simulink platform validates the system's functionality under various operating conditions, ensuring robust performance.

References

  • [1]. O. Bello and S. Zeadally, “Intelligent Device-to-Device Communication in the Internet of Things,” IEEE Systems Journal, vol. 10, no. 3, pp. 1172–1182, Sep. 2016, doi: 10.1109/JSYST.2014.2298837.
  • [2]. J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of Internet-of-Things platforms,” Computer Communications, vol. 89–90, pp. 5–16, Sep. 2016, doi: 10.1016/j.comcom.2016.03.015.
  • [3]. D. Sehrawat and N. S. Gill, “Smart Sensors: Analysis of Different Types of IoT Sensors,” in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India: IEEE, Apr. 2019, pp. 523–528. doi: 10.1109/ICOEI.2019.8862778.
  • [4]. A. J. Jara, P. Lopez, D. Fernandez, J. F. Castillo, M. A. Zamora, and A. F. Skarmeta, “Mobile digcovery: discovering and interacting with the world through the Internet of things,” Pers Ubiquit Comput, vol. 18, no. 2, pp. 323–338, Feb. 2014, doi: 10.1007/s00779-013-0648-0.
  • [5]. A. Čolaković and M. Hadžialić, “Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues,” Computer Networks, vol. 144, pp. 17–39, Oct. 2018, doi: 10.1016/j.comnet.2018.07.017.
  • [6]. R. H. Weber and E. Studer, “Cybersecurity in the Internet of Things: Legal aspects,” Computer Law & Security Review, vol. 32, no. 5, pp. 715–728, Oct. 2016, doi: 10.1016/j.clsr.2016.07.002.
  • [7]. S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of Things (IoT): A Literature Review,” JCC, vol. 03, no. 05, pp. 164–173, 2015, doi: 10.4236/jcc.2015.35021.
  • [8]. P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applications,” Journal of Electrical and Computer Engineering, vol. 2017, pp. 1–25, 2017, doi: 10.1155/2017/9324035.
  • [9]. Z. Ez Dallalbashi, S. Alhayalir, M. Jabbar Mnati, and A. Abd-aljbar Alhayali, “Low-cost battery monitoring circuit for a photovoltaic system based on LoRa/LoRaWAN network,” IJEECS, vol. 29, no. 2, p. 669, Feb. 2023, doi: 10.11591/ijeecs.v29.i2.pp669-677.
  • [10]. S. Nižetić, P. Šolić, D. López-de-Ipiña González-de-Artaza, and L. Patrono, “Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future,” Journal of Cleaner Production, vol. 274, p. 122877, Nov. 2020, doi: 10.1016/j.jclepro.2020.122877.
  • [11]. T. M. Ghazal et al., “IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare—A Review,” Future Internet, vol. 13, no. 8, p. 218, Aug. 2021, doi: 10.3390/fi13080218.
  • [12]. M. Javaid, A. Haleem, R. P. Singh, R. Suman, and E. S. Gonzalez, “Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability,” Sustainable Operations and Computers, vol. 3, pp. 203–217, 2022, doi: 10.1016/j.susoc.2022.01.008.
  • [13]. A. Ma, J. C. Tonday Rodriguez, and M. Sha, “Enabling Reliable Environmental Sensing with LoRa, Energy Harvesting, and Domain Adaptation,” in 2024 33rd International Conference on Computer Communications and Networks (ICCCN), Kailua-Kona, HI, USA: IEEE, Jul. 2024, pp. 1–9. doi: 10.1109/ICCCN61486.2024.10637563.
  • [14]. O. Chidolue and T. Iqbal, “Real-time monitoring and data acquisition using LoRa for a remote solar powered oil well,” IJAPE, vol. 13, no. 1, p. 201, Mar. 2024, doi: 10.11591/ijape.v13.i1.pp201-212.
  • [15]. R. Prodanović et al., “Wireless Sensor Network in Agriculture: Model of Cyber Security,” Sensors, vol. 20, no. 23, p. 6747, Nov. 2020, doi: 10.3390/s20236747.
  • [16]. F. B. G. Pratama, F. Hidayatullah, E. L. I. P. Sari, I. K. A. Enriko, F. N. Gustiyana, and A. Luthfi, “Solar-Powered LoRa Wireless Water Quality Monitoring for Saline Tilapia Aquaculture,” in 2024 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri Sarawak, Malaysia: IEEE, Jan. 2024, pp. 72–76. doi: 10.1109/GECOST60902.2024.10474710.
  • [17]. S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, “Internet of Things (IoT) communication protocols: Review,” in 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan: IEEE, May 2017, pp. 685–690. doi: 10.1109/ICITECH.2017.8079928.
  • [18]. A. Khalifeh, K. A. Aldahdouh, K. A. Darabkh, and W. Al-Sit, “A Survey of 5G Emerging Wireless Technologies Featuring LoRaWAN, Sigfox, NB-IoT and LTE-M,” in 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India: IEEE, Mar. 2019, pp. 561–566. doi: 10.1109/WiSPNET45539.2019.9032817.
  • [19]. G. Peruzzi and A. Pozzebon, “A Review of Energy Harvesting Techniques for Low Power Wide Area Networks (LPWANs),” Energies, vol. 13, no. 13, p. 3433, Jul. 2020, doi: 10.3390/en13133433.
  • [20]. S. Gupta and S. Gupta, “Energy Efficiency in IoT Based on Sensor Node Deployment Pattern,” RACSC, vol. 15, no. 6, p. e310322196674, Jul. 2022, doi: 10.2174/2666255814666210920160947.
  • [21]. G. M. Cabello, S. J. Navas, I. M. Vázquez, A. Iranzo, and F. J. Pino, “Renewable medium-small projects in Spain: Past and present of microgrid development,” Renewable and Sustainable Energy Reviews, vol. 165, p. 112622, Sep. 2022, doi: 10.1016/j.rser.2022.112622.
  • [22]. A. N. Talib, K. Hafeez, M. J. Mnati, and S. A. Khan, “Design and Implementation of New Battery Monitoring System for Photovoltaic Application,” in 2022 4th Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey: IEEE, Jun. 2022, pp. 1–7. doi: 10.1109/GPECOM55404.2022.9815759.
  • [23]. U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide Area Networks: An Overview,” IEEE Commun. Surv. Tutorials, vol. 19, no. 2, pp. 855–873, 2017, doi: 10.1109/COMST.2017.2652320.
  • [24]. A. Khalifeh, F. Mazunga, A. Nechibvute, and B. M. Nyambo, “Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review,” Sensors, vol. 22, no. 22, p. 8937, Nov. 2022, doi: 10.3390/s22228937.
  • [25]. K. Kutluay, Y. Cadirci, Y. S. Ozkazanc, and I. Cadirci, “A New Online State-of-Charge Estimation and Monitoring System for Sealed Lead–Acid Batteries in Telecommunication Power Supplies,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1315–1327, Oct. 2005, doi: 10.1109/TIE.2005.855671.
  • [26]. B. Al Homssi, K. Dakic, S. Maselli, H. Wolf, S. Kandeepan, and A. Al-Hourani, “IoT Network Design Using Open-Source LoRa Coverage Emulator,” IEEE Access, vol. 9, pp. 53636–53646, 2021, doi: 10.1109/ACCESS.2021.3070976.
  • [27]. D.-H. Kim, E.-K. Lee, and J. Kim, “Experiencing LoRa Network Establishment on a Smart Energy Campus Testbed,” Sustainability, vol. 11, no. 7, p. 1917, Mar. 2019, doi: 10.3390/su11071917.
  • [28]. A. Sales Mendes, D. M. Jiménez-Bravo, M. Navarro-Cáceres, V. Reis Quietinho Leithardt, and G. Villarrubia González, “Multi-Agent Approach Using LoRaWAN Devices: An Airport Case Study,” Electronics, vol. 9, no. 9, p. 1430, Sep. 2020, doi: 10.3390/electronics9091430.
There are 28 citations in total.

Details

Primary Language English
Subjects Photovoltaic Power Systems
Journal Section Articles
Authors

Ercan Aykut 0000-0001-8639-8408

Safaa Hawas 0009-0009-8728-861X

Publication Date December 29, 2024
Submission Date August 1, 2024
Acceptance Date September 10, 2024
Published in Issue Year 2024 Volume: 20 Issue: 4

Cite

APA Aykut, E., & Hawas, S. (2024). Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(4), 1-11. https://doi.org/10.18466/cbayarfbe.1526601
AMA Aykut E, Hawas S. Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems. CBUJOS. December 2024;20(4):1-11. doi:10.18466/cbayarfbe.1526601
Chicago Aykut, Ercan, and Safaa Hawas. “Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, no. 4 (December 2024): 1-11. https://doi.org/10.18466/cbayarfbe.1526601.
EndNote Aykut E, Hawas S (December 1, 2024) Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 4 1–11.
IEEE E. Aykut and S. Hawas, “Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems”, CBUJOS, vol. 20, no. 4, pp. 1–11, 2024, doi: 10.18466/cbayarfbe.1526601.
ISNAD Aykut, Ercan - Hawas, Safaa. “Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/4 (December 2024), 1-11. https://doi.org/10.18466/cbayarfbe.1526601.
JAMA Aykut E, Hawas S. Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems. CBUJOS. 2024;20:1–11.
MLA Aykut, Ercan and Safaa Hawas. “Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 20, no. 4, 2024, pp. 1-11, doi:10.18466/cbayarfbe.1526601.
Vancouver Aykut E, Hawas S. Application of LoRa Technology in Monitoring Solution for Photovoltaic Systems. CBUJOS. 2024;20(4):1-11.