Year 2025,
Volume: 21 Issue: 1, 27 - 34, 26.03.2025
Duygu Özyurt
,
Hürrem Akbıyık
References
- [1]. Colozza, A. 2000. Planetary Exploration Using Biomimetics, GN:07600-051.
- [2]. Davidson, J., Chwalowski, P., Lazos, B. 2003. Flight dynamic simulation assessment of a morphable hyper-elliptic cambered span winged configuration, AIAA Atmospheric Flight Mechanics Conference and Exhibit, Austin, Texas, AIAA 2003-5301.
- [3]. Chan, H. Y., Lam, J. H., Li, W. J. 2004. A biomimetic flying silicon microchip: Feasibility study, IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 447- 451.
- [4]. Jones, K. D., Bradshaw, C. J., Papadopoulos, J., Platzer, M. F. 2005. Bio-inspired design of flapping-wing micro air vehicles. The Aeronautical Journal; 109(1098): 385-393.
- [5]. Nguyen, Q. V., Truong, Q. T., Park, H. C., Goo, N. S., Byun, D. 2010. Measurement of force produced by an insect-mimicking flapping-wing system. Journal of Bionic Engineering; 7, S94-S102.
- [6]. Kim, S. H., Chang, J. W., Sohn, M. H. 2008. Flow visualization and aerodynamic-force measurement of a dragonfly-type model. Journal of visualization; 11, 37-44.
- [7]. Nguyen, T. T., Byun, D. 2008. Two-dimensional aerodynamic models of insect flight for robotic flapping wing mechanisms of maximum efficiency. Journal of Bionic Engineering; 5(1), 1-11.
- [8]. Nelson, D., Keating, F., Leonard, J., Jacob, J. 2013. Design of a Biomimetic Unmanned Aircraft System, 51th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas, AIAA 2013-0761.
- [9]. Laliberté, J. F., Kraemer, K. L., Dawson, J. W., Miyata, D. 2013. Design and manufacturing of biologically inspired micro aerial vehicle wings using rapid prototyping. International journal of micro air vehicles; 5(1), 15-38.
- [10]. Fish, F. E., Weber, P. W., Murray, M. M., Howle, L. E. 2011. The tubercles on humpback whales' flippers: application of bio-inspired technology. Integrative and Comparative Biology; 51(1), 203-213.
- [11]. Galantai, V. P., Sofla, A. Y. N., Meguid, S. A., Tan, K. T., Yeo, W. K. 2011. Bio-inspired wing morphing for unmanned aerial vehicles using intelligent materials. International Journal of Mechanics and Materials in Design; 8, 71-79.
- [12]. Bluman, J. E., Pohly, J. A., Sridhar, M. K., Kang, C. K., Landrum, D. B., Fahimi, F., Aono, H. 2018. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling. Bioinspiration & Biomimetics; 13(4), 046010.
- [13]. Hui, Z., Zhang, Y., Chen, G. 2019. Aerodynamic performance investigation on a morphing unmanned aerial vehicle with bio-inspired discrete wing structures. Aerospace Science and Technology; 95, 105419.
- [14]. Abbasi, S. H., Mahmood, A. 2019. Modeling, simulation and control of a bio-inspired electromechanical feather for gust mitigation in flapping wing UAV, 2nd International Conference on Communication, Computing and Digital systems (C-CODE), Islamabad, Pakistan, 195-200.
- [15]. Gudmundsson, S., Golubev, V. V., Drakunov, S., Reinholtz, C. A. 2017. Biomimemic Energy-Conserving/Harvesting Trajectory Planning for a sUAV, AIAA Atmospheric Flight Mechanics Conference, Denver, Colorado, 3889.
- [16]. Pons, A., Cirak, F. 2022. Pitch-axis supermanoeuvrability in a biomimetic morphing-wing aircraft. arXiv preprint arXiv:2205.09431.
- [17]. Li, B., Wang, D., Ma, L. 2019. BioTetra: a bioinspired multi-rotor aerial vehicle, IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 114-119.
- [18]. ElGhazali, A. F., Dol, S. S. 2020. Aerodynamic optimization of unmanned aerial vehicle through propeller improvements. Journal of Applied Fluid Mechanics, 13(3), 793-803.
- [19]. 손창호, 김상현, 송지훈, 이동렬. 2023. A Study on Aerodynamic and Acoustic Characteristics of Blades by Biomimetic Design for UAM. Journal of the Korean Society for Precision Engineering, 40(7), 571-580.
- [20]. Książek, P., Lalik, K., Pasławski, P., Pietrzak, M., Przejczowski, P., Przepióra, J. 2023. A preliminary measurement verification of sound power level emitted by biomimetic drone propellers inspired by an owl’s feather, International Carpathian Control Conference (ICCC), Miskolc-Szilvásvárad, Hungary, 225-229.
- [21]. Rajendran, P., Jayaprakash, A. 2023. Numerical performance analysis of a twin blade drone rotor propeller. Materials Today: Proceedings; 80(2), 492-498.
- [22]. Hasegawa, M., Sakaue, H. 2024. Propeller-noise reduction by microfiber coating on a blade surface. Sensors and Actuators A: Physical; 371, 115273.
- [23]. Bhardwaj, H., Cai, X., Win, L. S. T., Foong, S. 2023. Nature-inspired in-flight foldable rotorcraft. Bioinspiration & Biomimetics; 18(4), 046012.
- [24]. Huang, H., He, W., Zou, Y., Fu, Q. 2024. USTButterfly: a servo-driven biomimetic robotic butterfly. IEEE Transactions on Industrial Electronics; 71(2), 1758-1767.
- [25]. Min, Y., Zhao, G., Pan, D., Shao, X. 2023. Aspect ratio effects on the aerodynamic performance of a biomimetic hummingbird wing in flapping. Biomimetics, 8(2), 216.
- [26]. Xu, M., De, Q., Yu, D., Hu, A., Liu, Z., Wang, H. 2024. Biomimetic Morphing Quadrotor Inspired by Eagle Claw for Dynamic Grasping. IEEE Transactions on Robotics; 40, 2513-2528.
- [27]. Bardera, R., Rodríguez-Sevillano, Á. A., Barroso, E., Matías, J. C. 2023. Numerical analysis of a biomimetic UAV with variable length grids wingtips. Results in Engineering; 18, 101087.
- [28]. Banken, E., Oeffner, J. 2023. Biomimetics for innovative and future-oriented space applications-A review. Frontiers in Space Technologies; 3, 1000788.
- [29]. Rao, C., Liu, H. 2020. Effects of Reynolds number and distribution on passive flow control in owl-inspired leading-edge serrations. Integrative and Comparative Biology; 60(5), 1135-1146.
- [30]. Mulligan, R. 2020. Bio-inspired aerofoils for small wind turbines, International Conference on Renewable Energies and Power Quality (ICREPQ’20), Granada, Spain, 753-758.
- [31]. Ito, M. R., Duan, C., Wissa, A. A. 2019. The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device. Bioinspiration & biomimetics; 14(5), 056015.
- [32]. Gu, Y., Song, F., Bai, H., Wu, J., Liu, K., Nie, B., Lu, Z. 2024. Numerical and experimental studies on the owl-inspired propellers with various serrated trailing edges. Applied Acoustics, 220, 109948.
- [33]. Xue, D., Li, R., Liu, J. 2024. Research on Improvement Methods for Driven System of Bio-Inspired Aircraft to Increase Flight Speed. Drones; 8(4), 133.
- [34]. Kutty, H. A., Rajendran, P. 2017. Review on numerical and experimental research on conventional and unconventional propeller blade design. Int. Rev. Aerosp. Eng; 10(2), 61-73.
- [35]. Seeni, A., Rajendran, P., Kutty, H. A. 2018. A critical review on tubercles design for propellers. In IOP Conference Series: Materials Science and Engineering, 370(1), 012015.
- [36]. Butt, F. R., Talha, T. 2019. Numerical investigation of the effect of leading-edge tubercles on propeller performance. Journal of Aircraft, 56(3), 1014-1028.
- [37]. Bui, S. T., Luu, Q. K., Nguyen, D. Q., Le, N. D. M., Loianno, G. 2023. Tombo propeller: bioinspired deformable structure toward collision-accommodated control for drones. IEEE Transactions on Robotics, 39(1), 521-538.
- [38]. Noda, R., Ikeda, T., Nakata, T., Liu, H. 2022. Characterization of the low-noise drone propeller with serrated Gurney flap. Frontiers in Aerospace Engineering, 1, 1004828.
- [39]. Rao, C., Ikeda, T., Nakata, T., Liu, H. 2017. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. Bioinspiration & Biomimetics, 12(4), 046008.
- [40]. Wei, Y., Xu, F., Bian, S., Kong, D. 2020. Noise reduction of UAV using biomimetic propellers with varied morphologies leading-edge serration. Journal of Bionic Engineering; 17, 767-779.
- [41]. Kudo, T., Ukon, Y., Sumino, Y. 2001. Proposal of a Groove Cavitator on a Supercavitation Propeller, http://resolver. caltech. edu/cav2001: sessionB9. 003.
- [42]. Shengwang, Z. H. U., Guijian, X. I. A. O., Yi, H. E., Gang, L. I. U., Shayu, S. O. N. G., JIAHUA, S. 2022. Tip vortex cavitation of propeller bionic noise reduction surface based on precision abrasive belt grinding. Journal of Advanced Manufacturing Science and Technology 2(1), 2022003.
- [43]. Zhang, K., Ye, J., Zhong, H., Fu, B., Zhang, Y. 2024. Study on the tip flow control effect of pump jet propeller with groove structure. In Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control, Xi'an, China, 13163, 1771-1777.
- [44]. Seeni, A. S. 2020. Effect of grooves on aerodynamic performance of a low reynolds number propeller, (Doctoral dissertation).
- [45]. de Oliveira, T. L., de Carvalho, J. 2021. Design and numerical evaluation of quadrotor drone frame suitable for fabrication using fused filament fabrication with consumer-grade ABS. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(9), 436 (1-19).
- [46]. Nikhil, N., Shreyas, S. M., Vyshnavi, G., Yadav, S. 2020. Unmanned aerial vehicles (UAV) in disaster management applications, In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 140-148.
- [47]. Feng, B., Chen, D., Wang, J., Yang, X. 2015. Bionic research on bird feather for drag reduction. Advances in Mechanical Engineering; 7(2), 849294.
- [48]. Seyhan, M., Akbıyık, H. 2024. An experimental investigation on the flow control of the partially stepped NACA0012 airfoil at low Reynolds numbers. Ocean Engineering; 306, 118068.
- [49]. Abhishek, A., Krishna, M., Sinha, S., Bhowmik, J., Das, D. 2017. Design, development and flight testing of a novel quadrotor convertiplane unmanned air vehicle. In 73rd Annual Forum of the American Helicopter Society. Fairfax, VA: AHS International, Inc.
- [50]. Tuğrul Oktay, Yüksel Eraslan, 2020. Numerical investigation of effects of airspeed and rotational speed on quadrotor UAV propeller thrust coefficient. Journal of Aviation, 5(1), 9-15.
- [51]. Montagner, S. 2024. On the effects of freestream turbulence on a small drone propeller aerodynamics and aeroacoustics, (Doctoral dissertation, Politecnico di Torino).
- [52]. Svorcan, J. 2023. WMLES of flows around small-scale propellers-estimating aerodynamic performance and wake visualization. Theoretical and Applied Mechanics, 50(2), 133-144.
Propeller Modification with Groove Structure on Thrust Performance
Year 2025,
Volume: 21 Issue: 1, 27 - 34, 26.03.2025
Duygu Özyurt
,
Hürrem Akbıyık
Abstract
This study includes an investigation into the application of grooves in drone propellers that inspired from the structure of a bird's wing. The designed propeller involves the application of grooves at angles of 30, 45 and 60 degrees. Main purpose of using biomimetic design is to determine whether it is effective in improving thrust performance by directing the flow to the propeller blade through the grooves. Experimental investigation of the effects of these grooves on the propeller-engine thrust and the underlying causes of these effects were tried to be presented experimentally with TiO2 based surface oil imaging technique. From the experimental results, the highest thrust value was obtained for the modified prop-60⁰ model compared to the base propeller. Thrust measurements were measured at various rmp/V values. The maximum increase in thrust improvement is reached when the engine driven by 25% nominal power.
Ethical Statement
There are no ethical issues after the publication of this manuscript.
Supporting Institution
---
References
- [1]. Colozza, A. 2000. Planetary Exploration Using Biomimetics, GN:07600-051.
- [2]. Davidson, J., Chwalowski, P., Lazos, B. 2003. Flight dynamic simulation assessment of a morphable hyper-elliptic cambered span winged configuration, AIAA Atmospheric Flight Mechanics Conference and Exhibit, Austin, Texas, AIAA 2003-5301.
- [3]. Chan, H. Y., Lam, J. H., Li, W. J. 2004. A biomimetic flying silicon microchip: Feasibility study, IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 447- 451.
- [4]. Jones, K. D., Bradshaw, C. J., Papadopoulos, J., Platzer, M. F. 2005. Bio-inspired design of flapping-wing micro air vehicles. The Aeronautical Journal; 109(1098): 385-393.
- [5]. Nguyen, Q. V., Truong, Q. T., Park, H. C., Goo, N. S., Byun, D. 2010. Measurement of force produced by an insect-mimicking flapping-wing system. Journal of Bionic Engineering; 7, S94-S102.
- [6]. Kim, S. H., Chang, J. W., Sohn, M. H. 2008. Flow visualization and aerodynamic-force measurement of a dragonfly-type model. Journal of visualization; 11, 37-44.
- [7]. Nguyen, T. T., Byun, D. 2008. Two-dimensional aerodynamic models of insect flight for robotic flapping wing mechanisms of maximum efficiency. Journal of Bionic Engineering; 5(1), 1-11.
- [8]. Nelson, D., Keating, F., Leonard, J., Jacob, J. 2013. Design of a Biomimetic Unmanned Aircraft System, 51th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas, AIAA 2013-0761.
- [9]. Laliberté, J. F., Kraemer, K. L., Dawson, J. W., Miyata, D. 2013. Design and manufacturing of biologically inspired micro aerial vehicle wings using rapid prototyping. International journal of micro air vehicles; 5(1), 15-38.
- [10]. Fish, F. E., Weber, P. W., Murray, M. M., Howle, L. E. 2011. The tubercles on humpback whales' flippers: application of bio-inspired technology. Integrative and Comparative Biology; 51(1), 203-213.
- [11]. Galantai, V. P., Sofla, A. Y. N., Meguid, S. A., Tan, K. T., Yeo, W. K. 2011. Bio-inspired wing morphing for unmanned aerial vehicles using intelligent materials. International Journal of Mechanics and Materials in Design; 8, 71-79.
- [12]. Bluman, J. E., Pohly, J. A., Sridhar, M. K., Kang, C. K., Landrum, D. B., Fahimi, F., Aono, H. 2018. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling. Bioinspiration & Biomimetics; 13(4), 046010.
- [13]. Hui, Z., Zhang, Y., Chen, G. 2019. Aerodynamic performance investigation on a morphing unmanned aerial vehicle with bio-inspired discrete wing structures. Aerospace Science and Technology; 95, 105419.
- [14]. Abbasi, S. H., Mahmood, A. 2019. Modeling, simulation and control of a bio-inspired electromechanical feather for gust mitigation in flapping wing UAV, 2nd International Conference on Communication, Computing and Digital systems (C-CODE), Islamabad, Pakistan, 195-200.
- [15]. Gudmundsson, S., Golubev, V. V., Drakunov, S., Reinholtz, C. A. 2017. Biomimemic Energy-Conserving/Harvesting Trajectory Planning for a sUAV, AIAA Atmospheric Flight Mechanics Conference, Denver, Colorado, 3889.
- [16]. Pons, A., Cirak, F. 2022. Pitch-axis supermanoeuvrability in a biomimetic morphing-wing aircraft. arXiv preprint arXiv:2205.09431.
- [17]. Li, B., Wang, D., Ma, L. 2019. BioTetra: a bioinspired multi-rotor aerial vehicle, IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 114-119.
- [18]. ElGhazali, A. F., Dol, S. S. 2020. Aerodynamic optimization of unmanned aerial vehicle through propeller improvements. Journal of Applied Fluid Mechanics, 13(3), 793-803.
- [19]. 손창호, 김상현, 송지훈, 이동렬. 2023. A Study on Aerodynamic and Acoustic Characteristics of Blades by Biomimetic Design for UAM. Journal of the Korean Society for Precision Engineering, 40(7), 571-580.
- [20]. Książek, P., Lalik, K., Pasławski, P., Pietrzak, M., Przejczowski, P., Przepióra, J. 2023. A preliminary measurement verification of sound power level emitted by biomimetic drone propellers inspired by an owl’s feather, International Carpathian Control Conference (ICCC), Miskolc-Szilvásvárad, Hungary, 225-229.
- [21]. Rajendran, P., Jayaprakash, A. 2023. Numerical performance analysis of a twin blade drone rotor propeller. Materials Today: Proceedings; 80(2), 492-498.
- [22]. Hasegawa, M., Sakaue, H. 2024. Propeller-noise reduction by microfiber coating on a blade surface. Sensors and Actuators A: Physical; 371, 115273.
- [23]. Bhardwaj, H., Cai, X., Win, L. S. T., Foong, S. 2023. Nature-inspired in-flight foldable rotorcraft. Bioinspiration & Biomimetics; 18(4), 046012.
- [24]. Huang, H., He, W., Zou, Y., Fu, Q. 2024. USTButterfly: a servo-driven biomimetic robotic butterfly. IEEE Transactions on Industrial Electronics; 71(2), 1758-1767.
- [25]. Min, Y., Zhao, G., Pan, D., Shao, X. 2023. Aspect ratio effects on the aerodynamic performance of a biomimetic hummingbird wing in flapping. Biomimetics, 8(2), 216.
- [26]. Xu, M., De, Q., Yu, D., Hu, A., Liu, Z., Wang, H. 2024. Biomimetic Morphing Quadrotor Inspired by Eagle Claw for Dynamic Grasping. IEEE Transactions on Robotics; 40, 2513-2528.
- [27]. Bardera, R., Rodríguez-Sevillano, Á. A., Barroso, E., Matías, J. C. 2023. Numerical analysis of a biomimetic UAV with variable length grids wingtips. Results in Engineering; 18, 101087.
- [28]. Banken, E., Oeffner, J. 2023. Biomimetics for innovative and future-oriented space applications-A review. Frontiers in Space Technologies; 3, 1000788.
- [29]. Rao, C., Liu, H. 2020. Effects of Reynolds number and distribution on passive flow control in owl-inspired leading-edge serrations. Integrative and Comparative Biology; 60(5), 1135-1146.
- [30]. Mulligan, R. 2020. Bio-inspired aerofoils for small wind turbines, International Conference on Renewable Energies and Power Quality (ICREPQ’20), Granada, Spain, 753-758.
- [31]. Ito, M. R., Duan, C., Wissa, A. A. 2019. The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device. Bioinspiration & biomimetics; 14(5), 056015.
- [32]. Gu, Y., Song, F., Bai, H., Wu, J., Liu, K., Nie, B., Lu, Z. 2024. Numerical and experimental studies on the owl-inspired propellers with various serrated trailing edges. Applied Acoustics, 220, 109948.
- [33]. Xue, D., Li, R., Liu, J. 2024. Research on Improvement Methods for Driven System of Bio-Inspired Aircraft to Increase Flight Speed. Drones; 8(4), 133.
- [34]. Kutty, H. A., Rajendran, P. 2017. Review on numerical and experimental research on conventional and unconventional propeller blade design. Int. Rev. Aerosp. Eng; 10(2), 61-73.
- [35]. Seeni, A., Rajendran, P., Kutty, H. A. 2018. A critical review on tubercles design for propellers. In IOP Conference Series: Materials Science and Engineering, 370(1), 012015.
- [36]. Butt, F. R., Talha, T. 2019. Numerical investigation of the effect of leading-edge tubercles on propeller performance. Journal of Aircraft, 56(3), 1014-1028.
- [37]. Bui, S. T., Luu, Q. K., Nguyen, D. Q., Le, N. D. M., Loianno, G. 2023. Tombo propeller: bioinspired deformable structure toward collision-accommodated control for drones. IEEE Transactions on Robotics, 39(1), 521-538.
- [38]. Noda, R., Ikeda, T., Nakata, T., Liu, H. 2022. Characterization of the low-noise drone propeller with serrated Gurney flap. Frontiers in Aerospace Engineering, 1, 1004828.
- [39]. Rao, C., Ikeda, T., Nakata, T., Liu, H. 2017. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. Bioinspiration & Biomimetics, 12(4), 046008.
- [40]. Wei, Y., Xu, F., Bian, S., Kong, D. 2020. Noise reduction of UAV using biomimetic propellers with varied morphologies leading-edge serration. Journal of Bionic Engineering; 17, 767-779.
- [41]. Kudo, T., Ukon, Y., Sumino, Y. 2001. Proposal of a Groove Cavitator on a Supercavitation Propeller, http://resolver. caltech. edu/cav2001: sessionB9. 003.
- [42]. Shengwang, Z. H. U., Guijian, X. I. A. O., Yi, H. E., Gang, L. I. U., Shayu, S. O. N. G., JIAHUA, S. 2022. Tip vortex cavitation of propeller bionic noise reduction surface based on precision abrasive belt grinding. Journal of Advanced Manufacturing Science and Technology 2(1), 2022003.
- [43]. Zhang, K., Ye, J., Zhong, H., Fu, B., Zhang, Y. 2024. Study on the tip flow control effect of pump jet propeller with groove structure. In Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control, Xi'an, China, 13163, 1771-1777.
- [44]. Seeni, A. S. 2020. Effect of grooves on aerodynamic performance of a low reynolds number propeller, (Doctoral dissertation).
- [45]. de Oliveira, T. L., de Carvalho, J. 2021. Design and numerical evaluation of quadrotor drone frame suitable for fabrication using fused filament fabrication with consumer-grade ABS. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(9), 436 (1-19).
- [46]. Nikhil, N., Shreyas, S. M., Vyshnavi, G., Yadav, S. 2020. Unmanned aerial vehicles (UAV) in disaster management applications, In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 140-148.
- [47]. Feng, B., Chen, D., Wang, J., Yang, X. 2015. Bionic research on bird feather for drag reduction. Advances in Mechanical Engineering; 7(2), 849294.
- [48]. Seyhan, M., Akbıyık, H. 2024. An experimental investigation on the flow control of the partially stepped NACA0012 airfoil at low Reynolds numbers. Ocean Engineering; 306, 118068.
- [49]. Abhishek, A., Krishna, M., Sinha, S., Bhowmik, J., Das, D. 2017. Design, development and flight testing of a novel quadrotor convertiplane unmanned air vehicle. In 73rd Annual Forum of the American Helicopter Society. Fairfax, VA: AHS International, Inc.
- [50]. Tuğrul Oktay, Yüksel Eraslan, 2020. Numerical investigation of effects of airspeed and rotational speed on quadrotor UAV propeller thrust coefficient. Journal of Aviation, 5(1), 9-15.
- [51]. Montagner, S. 2024. On the effects of freestream turbulence on a small drone propeller aerodynamics and aeroacoustics, (Doctoral dissertation, Politecnico di Torino).
- [52]. Svorcan, J. 2023. WMLES of flows around small-scale propellers-estimating aerodynamic performance and wake visualization. Theoretical and Applied Mechanics, 50(2), 133-144.